Show that the Hydrogen wave functions are normalized

Click For Summary
SUMMARY

The discussion focuses on demonstrating the normalization of the Hydrogen wave functions Ψ(1,0,0) and Ψ(2,0,0). The wave function is expressed as Ψ(1,0,0) = (2/(a0^(3/2))*e^(-r/a0)*(1/sqrt(2))*(1/sqrt(2*pi)). Participants emphasize the necessity of integrating over three dimensions using the equation ∫|Ψ|^2 dx = 1, specifically applying the spherical coordinates integral ∫∫|R(r)|^2*r^2*sinθ dr dθ dφ. The correct limits of integration are established as r from 0 to ∞, θ from 0 to π, and φ from 0 to 2π, leading to the conclusion that the wave functions are indeed normalized when calculated correctly.

PREREQUISITES
  • Understanding of quantum mechanics and wave functions
  • Familiarity with spherical coordinates in integration
  • Knowledge of the Hydrogen atom model
  • Proficiency in calculus, particularly in evaluating multiple integrals
NEXT STEPS
  • Study the normalization of wave functions in quantum mechanics
  • Learn about spherical coordinates and their application in integrals
  • Explore the properties of the Hydrogen atom and its wave functions
  • Practice evaluating multiple integrals, focusing on limits of integration
USEFUL FOR

Students of quantum mechanics, physicists working with atomic models, and anyone interested in the mathematical foundations of wave functions and their normalization.

kneesarethebees

Homework Statement


Show that the (1,0,0) and (2,0,0) wave functions are properly normalized.
We know that:

Ψ(1,0,0) = (2/(a0^(3/2))*e^(-r/a0)*(1/sqrt(2))*(1/sqrt(2*pi))

where:
R(r) = (2/(a0^(3/2))*e^(-r/a0)
Θ(θ) = (1/sqrt(2))
Φ(φ) = (1/sqrt(2*pi))

Homework Equations


(1) ∫|Ψ|^2 dx = 1
(2) |R(r)|^2*|Θ(θ)|^2*|Φ(φ)|^2*r^2*sinθ dr dθ dφ ... (? might be useful)

The Attempt at a Solution


So I know that in order for a function to be properly normalized, it has to have the absolute value of the sine wave squared equal to 1. I originally integrated from negative inf to positive inf, but that did not give me 1 = 1. I tried looking to see where I went wrong but I found equation (2) in my book, but wasn't sure how to integrate that. What am I doing wrong? I think my limits of integration might be wrong because I was doing:

(3) ∫ ((2/(a0^(3/2))*e^(-r/a0)*(1/sqrt(2))*(1/sqrt(2*pi)))^2 dr = 1 from - inf to + inf

and not worrying about that sin θ thing I mentioned earlier.

Do I need to be using equation (2)? How do I find limits of integration? I know that - infinity doesn't make sense for r, so maybe it is just from 0 to infinity with equation 3 maybe?
 
Physics news on Phys.org
## r ## goes from 0 to ## +\infty ##. ## \theta ## goes from ## 0 ## to ## \pi ##, and ## \phi ## goes from 0 to ## 2 \pi ##.
 
  • Like
Likes kneesarethebees
You need to integrate over all space, so it's going to be a three-dimensional integral. You need to use (2).
 
  • Like
Likes kneesarethebees
Okay, so since I was given what R(r), Θ(θ), and Φ(φ) is, I came up with this equation from what vela has suggested and integrating over what Charles said:

∫∫|R(r)|^2*r^2*sinθ dr dθ for r from 0 to inf and theta from 0 to pi

(1/pi*a0^3) ∫∫ e^(-2r/a0)*r^2*sinθ dr dθ

When evaluating the dr integral using a table of integrals, I get the value of 0. Now when evaluating the dθ integral I get -cosθ from 0 to pi, which results in 2. Why is this still not giving me 1?

Thanks guys :)
 
Because you’re doing it wrong. You need to show your work. We can’t tell what you did otherwise.
 
  • Like
Likes Charles Link
Alright, so the table in my book gives me the ##R(r)##, ##Θ(θ)##, and ##Φ(φ)## for (1,0,0). We know that
$$\int \left | \psi \right| ^2 = 1 $$ and
$$\left| R(r) \right| ^2 ~ \left| Θ(θ) \right| ^2 ~ \left| Φ(φ) \right| ^2 ~ r^2 ~ sinθ ~ dr ~ dθ ~ dφ $$ and
$$\psi = \left| R(r) \right| ^2 ~ \left| Θ(θ) \right| ^2 ~ \left| Φ(φ) \right| ^2$$
Therefore, we can say that
$$\int_0^\infty \int_0^\pi \left| \psi \right| ^2 ~ r^2 ~ sinθ ~ dr ~ dθ = 1$$

Okay, so now I just plug in my values for ##\psi## which gave me the integral:
$$\int_0^\infty \int_0^\pi \frac {4} {4 \pi a_0^3} e^{-2r/a_0} r^2 sin \theta ~ dr ~ d\theta$$
Pull the constants out:
$$\frac {1} {\pi a_0^3} \int_0^\infty \int_0^\pi r^2 e^{-2r/a_0} sin \theta ~ dr ~ d\theta$$

Evaluating the ##dr## integral by using a table of integrals:
$$\int_0^\infty r^2 e^{-2r/a_0} ~ dr = \left[ \frac {-e^{-2r/a_0}} {2/a_0} \left( r^2 + \frac {2r} {2/a_0} + \frac {2} {4/a_0^2} \right) \right]_0^\infty$$
##0 - 3.7*10^{-5} = 3.7*10^{-5}## when evaluating

Evaluating ##d\theta##
$$\int_0^\pi sin\theta ~ d\theta = \left[ -cos\theta \right]_0^\pi$$
##1 - \left( -1 \right) = 2##

Using values now:
$$\frac {1} {\pi a_0^3} \left[ 3.7*10^{-4} * 2 \right] = 4.5*10^{-4} \neq 1$$

I took a couple of hours to learn LaTeX hopefully that outlines my steps more clearly? I think I might be integrating the double integral wrong with my two steps which is why I can't get it to equal 1
 
If you wrote it correctly, I get ## (1/4 )a_o^3 ## for the ## dr ## integral. Also the ## \phi ## integral gives ## 2 \pi ##. I think the results work.
 
  • Like
Likes kneesarethebees
Charles, how are you integrating for the ##\phi## integral? I don't have an equation for that, just a value for Φ(##\phi##) as seen from my response right above yours.
 
kneesarethebees said:
Therefore, we can say that
$$\int_0^\infty \int_0^\pi \left| \psi \right| ^2 ~ r^2 ~ sinθ ~ dr ~ dθ = 1$$
That is not correct. First, the order of the integral signs and the integration elements should be consistent. Second, this has to be a three-dimensional integral:
$$
\int_0^{2\pi} \int_0^\pi \int_0^\infty \left| \psi \right| ^2 ~ r^2 ~ \sinθ ~ dr ~ dθ ~ d\phi = 1
$$
 
  • #10
kneesarethebees said:
Charles, how are you integrating for the ##\phi## integral? I don't have an equation for that, just a value for Φ(##\phi##) as seen from my response right above yours.
For ## A ## is a constant, ## \int\limits_{0}^{2 \pi} A \, d \phi=A \, \phi |_{0}^{2 \pi}=A [2 \pi-0]=A (2 \pi) ##. (It's as simple as they come, but you might be somewhat new to calculus, so I spelled it out in detail.)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
Replies
7
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 22 ·
Replies
22
Views
4K
Replies
5
Views
2K