Show that the ratio ##x+y:x-y## is increased by subtracting ##y##

  • Thread starter Thread starter RChristenk
  • Start date Start date
  • Tags Tags
    Algebra
Click For Summary

Homework Help Overview

The discussion revolves around the mathematical relationship between the ratios ##x+y:x-y## and ##x:x-2y##, specifically exploring how the former is affected by subtracting ##y## from each term. The subject area includes algebraic manipulation and ratio comparison.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the validity of assuming a proportional relationship between ##x## and ##y## through the variable ##k=\dfrac{x}{y}##. Questions arise regarding the implications of this assumption and its necessity in the problem context.

Discussion Status

There is an ongoing examination of the assumptions made in the problem statement, particularly regarding the inclusion of the relationship ##x=ky##. Some participants argue that the problem statement does not require additional conditions, while others suggest that the lack of explicit definitions for ##x## and ##y## leads to speculation.

Contextual Notes

Participants note that the problem statement does not specify conditions for ##x## and ##y##, leading to differing interpretations of the requirements for the solution. Additionally, there is mention of constraints such as ##x > 2y \ge 0## being assumed by some participants.

RChristenk
Messages
73
Reaction score
9
Homework Statement
Show that the ratio ##x+y:x-y## is increased by subtracting ##y## from each term.
Relevant Equations
##x=ky##
##x+y:x-y=\dfrac{x+y}{x-y} \tag1##

Subtract ##y## from each term:

##x:x-2y=\dfrac{x}{x-2y} \tag2##

Assume ##k=\dfrac{x}{y} \Rightarrow x=ky##

##(1)= \dfrac{ky+y}{ky-y}, (2)= \dfrac{ky}{ky-2y}##

Subtract ##(1)## from ##(2)## since we are told by the problem statement ##(2)## is bigger:

##\dfrac{(ky)(ky-y)-(ky+y)(ky-2y)}{(ky-y)(ky-2y)} \Rightarrow \dfrac{k^2y^2-ky^2-(k^2y^2-2ky^2+ky^2-2y^2)}{k^2y^2-2ky^2-ky^2+2y^2} \Rightarrow \dfrac{2y^2}{k^2y^2-3ky^2+2y^2}##

##\Rightarrow \dfrac{2}{k^2-3k+2} \Rightarrow \dfrac{2}{(k-2)(k-1)}##

For ##1<k<2; \dfrac{2}{(k-2)(k-1)}<0## and ##\dfrac{x+y}{x-y}>\dfrac{x}{x-2y}##

For ##k<1## and ##k>2##; ##\dfrac{x+y}{x-y}<\dfrac{x}{x-2y}##

Question: The key to solving this problem was assuming ##k=\dfrac{x}{y} \Rightarrow x=ky##. I know how to plug and chug (obviously), but my question is why is this valid? How does one know ##x## varies proportionally with ##y##? Because ##x## and ##y## could be anything, there's no guarantee they vary proportionally. What are the mathematical rules and assumptions that make this work? Thanks.
 
Physics news on Phys.org
RChristenk said:
Question: The key to solving this problem was assuming ##k=\dfrac{x}{y} \Rightarrow x=ky##. I know how to plug and chug (obviously), but my question is why is this valid? How does one know ##x## varies proportionally with ##y##? Because ##x## and ##y## could be anything, there's no guarantee they vary proportionally.
They don't vary proportionally. The ##k## as defined here is another variable, depending on ##x## and ##y##. Not a constant.

A quicker way is to show that, for any ##x,y## we have$$\frac{x+y}{x-y} \le \frac x {x -2y}$$With equality iff ##y =0##.

PS I'm assuming ##x > 2y \ge 0##.
 
Last edited:
RChristenk said:
Homework Statement: Show that the ratio ##x+y:x-y## is increased by subtracting ##y## from each term.
Relevant Equations: ##x=ky##

##x+y:x-y=\dfrac{x+y}{x-y} \tag1##
You wrote ##x = ky## as a relevant equation but it doesn't appear in the problem statement. If this is a given condition, it really should appear in the problem statement.

Something like this:
"Given that ##x = ky##, show that ##\frac{x + y}{x - y} < \frac x{x - 2y}##."
 
The variable ## k ## is involved because the condition, which must be met, can be expressed using one variable, ## k ##, instead of two, ## x ## and ## y ##, and nothing more. The variable ## k ## could be excluded from the condition and in that case the condition ## k \lt 1 ## or ## k \gt 2 ## would be ## x \lt y ## or ## x \gt 2y ## for ## y \gt 0 ## and ## x \lt 2y ## or ## x \gt y ## for ## y \lt 0 ##.

The problem statement is missing nothing. The problem statement implies that the condition must be included into the result. The problem statement is “Show that the ratio ## x + y : x – y ## is increased by subtracting ## y ## from each term.”, not “## \forall x \in R ## and ## \forall y \in R ## show that the ratio ## x + y : x – y ## is increased by subtracting ## y ## from each term”. In other words values for variables ## x ## and ## y ## are not defined in the problem statement, they must be defined and that is a solution to this problem.
 
Gavran said:
The variable ## k ## is involved because the condition, which must be met, can be expressed using one variable, ## k ##, instead of two, ## x ## and ## y ##, and nothing more.
Since you are not the OP here, this all seems like speculation.
Gavran said:
The problem statement is missing nothing. The problem statement implies that the condition must be included into the result.
Again, speculation. The OP did not include the equation x = ky in the problem statement. We should not have to infer what the problem statement includes or doesn't include.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
10
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
25
Views
3K
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K