Show that the tridiagonal matrix is positive definite

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Matrix Positive
Click For Summary
SUMMARY

The tridiagonal matrix $A=\begin{pmatrix}2 & 1 & \ldots & 0 \\ 1 & 2 & 1 & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 1 & 2\end{pmatrix}$ is proven to be positive definite. The proof utilizes the inner product $\langle x, Ax\rangle$, demonstrating that $\langle x, Ax\rangle \geq 0$ and that $\langle x, Ax\rangle = 0$ implies $x = 0$. The approach involves expressing $\langle x, Ax\rangle$ as a sum of squares, confirming that it is non-negative and only zero for the zero vector.

PREREQUISITES
  • Understanding of linear algebra concepts, specifically matrix properties.
  • Familiarity with inner product spaces and their properties.
  • Knowledge of tridiagonal matrices and their structure.
  • Ability to manipulate and simplify algebraic expressions involving sums and squares.
NEXT STEPS
  • Study the properties of positive definite matrices in linear algebra.
  • Learn about the Cholesky decomposition and its relation to positive definiteness.
  • Explore the implications of positive definiteness in optimization problems.
  • Investigate other types of matrices, such as symmetric and Hermitian matrices, and their properties.
USEFUL FOR

Mathematicians, students studying linear algebra, and anyone interested in matrix theory and its applications in optimization and numerical analysis.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the tridiagonal matrix $A=\begin{pmatrix}2 & 1 & \ldots & 0 \\ 1 & 2 & 1 & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 1 & 2\end{pmatrix}$. I want to show that it is positive definite.

For that it is given the following hint:
1) $\langle x, Ax\rangle \geq 0$
2) $\langle x, Ax\rangle =0 \Rightarrow x=0$ I have done the following:

The $i$-th component of the vector $Ax$ is \begin{equation*}(Ax)_i=x_{i-1}+2x_i+x_{i+1} , \ i=1, 2, \ldots , n \ \text{ with } x_0=x_{n+1}=0\end{equation*}
Then we have the following: \begin{equation*}\langle x, Ax\rangle=\sum_{i=1}^nx_i(Ax)_i =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )=\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1}\end{equation*}

Is everything correct so far? (Wondering)

Now we have to show that it is positive if the vector $x$ is not the zero vector and equal to $0$ if the vector is the zero vector, right? But how can we do that? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

We have the tridiagonal matrix $A=\begin{pmatrix}2 & 1 & \ldots & 0 \\ 1 & 2 & 1 & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 1 & 2\end{pmatrix}$. I want to show that it is positive definite.

For that it is given the following hint:
1) $\langle x, Ax\rangle \geq 0$
2) $\langle x, Ax\rangle =0 \Rightarrow x=0$ I have done the following:

The $i$-th component of the vector $Ax$ is \begin{equation*}(Ax)_i=x_{i-1}+2x_i+x_{i+1} , \ i=1, 2, \ldots , n \ \text{ with } x_0=x_{n+1}=0\end{equation*}
Then we have the following: \begin{equation*}\langle x, Ax\rangle=\sum_{i=1}^nx_i(Ax)_i =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )=\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1}\end{equation*}

Is everything correct so far? (Wondering)

Now we have to show that it is positive if the vector $x$ is not the zero vector and equal to $0$ if the vector is the zero vector, right? But how can we do that? (Wondering)

Hey mathmari!

How about trying to write it as a sum of squares?
That is, something like $(x_1+x_2)^2 + (x_2 + x_3)^2 + ...$.
Squares are always $\ge 0$ aren't they?
With equality only if all squares are $0$? (Wondering)
 
Klaas van Aarsen said:
How about trying to write it as a sum of squares?
That is, something like $(x_1+x_2)^2 + (x_2 + x_3)^2 + ...$.
Squares are always $\ge 0$ aren't they?
With equality only if all squares are $0$? (Wondering)

Ahh so we have the following, don't we?
\begin{align*}\langle x, Ax\rangle&=\sum_{i=1}^nx_i(Ax)_i \\ & =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )\\ & =\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1} \\ & =x_1 x_{0}+\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} +x_nx_{n+1} \\ & =\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = \sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = 2\sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2 \\ & = \left (\sum_{i=1}^{n-1} x_i^2+x_n^2\right )+2\sum_{i=1}^{n-1}x_i x_{i+1}+\left (x_1^2+\sum_{i=2}^n x_i^2\right ) \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=2}^n x_i^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=1}^{n-1} x_{i+1}^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i^2+2x_i x_{i+1}+ x_{i+1}^2\right )+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i+ x_{i+1}\right )^2+x_1^2+x_n^2 \end{align*}
So we get $$\langle x, Ax\rangle \geq 0 \ \text{ and } \ \langle x, Ax\rangle=0 \iff x_i=0 \ \forall i \iff x=0$$

(Wondering)
 
mathmari said:
Ahh so we have the following, don't we?
\begin{align*}\langle x, Ax\rangle&=\sum_{i=1}^nx_i(Ax)_i \\ & =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )\\ & =\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1} \\ & =x_1 x_{0}+\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} +x_nx_{n+1} \\ & =\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = \sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = 2\sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2 \\ & = \left (\sum_{i=1}^{n-1} x_i^2+x_n^2\right )+2\sum_{i=1}^{n-1}x_i x_{i+1}+\left (x_1^2+\sum_{i=2}^n x_i^2\right ) \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=2}^n x_i^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=1}^{n-1} x_{i+1}^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i^2+2x_i x_{i+1}+ x_{i+1}^2\right )+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i+ x_{i+1}\right )^2+x_1^2+x_n^2 \end{align*}
So we get $$\langle x, Ax\rangle \geq 0 \ \text{ and } \ \langle x, Ax\rangle=0 \iff x_i=0 \ \forall i \iff x=0$$

(Wondering)

(Nod)
 
Klaas van Aarsen said:
(Nod)

Thank you! (Yes)
 

Similar threads

  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K