MHB Show that the tridiagonal matrix is positive definite

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Matrix Positive
Click For Summary
The discussion focuses on proving that the tridiagonal matrix A is positive definite. The key steps involve calculating the expression ⟨x, Ax⟩ and showing it is non-negative. The participants suggest expressing the result as a sum of squares, which guarantees non-negativity and indicates that equality holds only when the vector x is the zero vector. The conclusion reached is that ⟨x, Ax⟩ is greater than or equal to zero, and equals zero if and only if x is the zero vector. This confirms that the matrix A is indeed positive definite.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the tridiagonal matrix $A=\begin{pmatrix}2 & 1 & \ldots & 0 \\ 1 & 2 & 1 & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 1 & 2\end{pmatrix}$. I want to show that it is positive definite.

For that it is given the following hint:
1) $\langle x, Ax\rangle \geq 0$
2) $\langle x, Ax\rangle =0 \Rightarrow x=0$ I have done the following:

The $i$-th component of the vector $Ax$ is \begin{equation*}(Ax)_i=x_{i-1}+2x_i+x_{i+1} , \ i=1, 2, \ldots , n \ \text{ with } x_0=x_{n+1}=0\end{equation*}
Then we have the following: \begin{equation*}\langle x, Ax\rangle=\sum_{i=1}^nx_i(Ax)_i =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )=\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1}\end{equation*}

Is everything correct so far? (Wondering)

Now we have to show that it is positive if the vector $x$ is not the zero vector and equal to $0$ if the vector is the zero vector, right? But how can we do that? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
Hey! :o

We have the tridiagonal matrix $A=\begin{pmatrix}2 & 1 & \ldots & 0 \\ 1 & 2 & 1 & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 1 & 2\end{pmatrix}$. I want to show that it is positive definite.

For that it is given the following hint:
1) $\langle x, Ax\rangle \geq 0$
2) $\langle x, Ax\rangle =0 \Rightarrow x=0$ I have done the following:

The $i$-th component of the vector $Ax$ is \begin{equation*}(Ax)_i=x_{i-1}+2x_i+x_{i+1} , \ i=1, 2, \ldots , n \ \text{ with } x_0=x_{n+1}=0\end{equation*}
Then we have the following: \begin{equation*}\langle x, Ax\rangle=\sum_{i=1}^nx_i(Ax)_i =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )=\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1}\end{equation*}

Is everything correct so far? (Wondering)

Now we have to show that it is positive if the vector $x$ is not the zero vector and equal to $0$ if the vector is the zero vector, right? But how can we do that? (Wondering)

Hey mathmari!

How about trying to write it as a sum of squares?
That is, something like $(x_1+x_2)^2 + (x_2 + x_3)^2 + ...$.
Squares are always $\ge 0$ aren't they?
With equality only if all squares are $0$? (Wondering)
 
Klaas van Aarsen said:
How about trying to write it as a sum of squares?
That is, something like $(x_1+x_2)^2 + (x_2 + x_3)^2 + ...$.
Squares are always $\ge 0$ aren't they?
With equality only if all squares are $0$? (Wondering)

Ahh so we have the following, don't we?
\begin{align*}\langle x, Ax\rangle&=\sum_{i=1}^nx_i(Ax)_i \\ & =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )\\ & =\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1} \\ & =x_1 x_{0}+\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} +x_nx_{n+1} \\ & =\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = \sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = 2\sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2 \\ & = \left (\sum_{i=1}^{n-1} x_i^2+x_n^2\right )+2\sum_{i=1}^{n-1}x_i x_{i+1}+\left (x_1^2+\sum_{i=2}^n x_i^2\right ) \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=2}^n x_i^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=1}^{n-1} x_{i+1}^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i^2+2x_i x_{i+1}+ x_{i+1}^2\right )+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i+ x_{i+1}\right )^2+x_1^2+x_n^2 \end{align*}
So we get $$\langle x, Ax\rangle \geq 0 \ \text{ and } \ \langle x, Ax\rangle=0 \iff x_i=0 \ \forall i \iff x=0$$

(Wondering)
 
mathmari said:
Ahh so we have the following, don't we?
\begin{align*}\langle x, Ax\rangle&=\sum_{i=1}^nx_i(Ax)_i \\ & =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )\\ & =\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1} \\ & =x_1 x_{0}+\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} +x_nx_{n+1} \\ & =\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = \sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = 2\sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2 \\ & = \left (\sum_{i=1}^{n-1} x_i^2+x_n^2\right )+2\sum_{i=1}^{n-1}x_i x_{i+1}+\left (x_1^2+\sum_{i=2}^n x_i^2\right ) \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=2}^n x_i^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=1}^{n-1} x_{i+1}^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i^2+2x_i x_{i+1}+ x_{i+1}^2\right )+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i+ x_{i+1}\right )^2+x_1^2+x_n^2 \end{align*}
So we get $$\langle x, Ax\rangle \geq 0 \ \text{ and } \ \langle x, Ax\rangle=0 \iff x_i=0 \ \forall i \iff x=0$$

(Wondering)

(Nod)
 
Klaas van Aarsen said:
(Nod)

Thank you! (Yes)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K