Show that the tridiagonal matrix is positive definite

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Matrix Positive
Click For Summary

Discussion Overview

The discussion centers on demonstrating that a specific tridiagonal matrix is positive definite. Participants explore the mathematical properties of the matrix and engage in reasoning about the implications of the inner product involving the matrix.

Discussion Character

  • Mathematical reasoning
  • Exploratory
  • Technical explanation

Main Points Raised

  • One participant presents the tridiagonal matrix and the conditions for positive definiteness, specifically the inner product conditions.
  • Another participant suggests expressing the inner product as a sum of squares, noting that squares are non-negative and equal to zero only when all terms are zero.
  • A participant elaborates on the calculation of the inner product, showing various steps and transformations leading to a sum of squares representation.
  • It is proposed that the inner product is non-negative and equals zero if and only if the vector is the zero vector.

Areas of Agreement / Disagreement

Participants generally agree on the approach to demonstrate the positive definiteness of the matrix through the inner product and the sum of squares representation. However, the discussion remains exploratory, with no final consensus on the proof being fully established.

Contextual Notes

The discussion includes various mathematical steps and transformations that may depend on specific assumptions about the vector components and the properties of the matrix. Some steps in the reasoning are not fully resolved, leaving room for further exploration.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the tridiagonal matrix $A=\begin{pmatrix}2 & 1 & \ldots & 0 \\ 1 & 2 & 1 & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 1 & 2\end{pmatrix}$. I want to show that it is positive definite.

For that it is given the following hint:
1) $\langle x, Ax\rangle \geq 0$
2) $\langle x, Ax\rangle =0 \Rightarrow x=0$ I have done the following:

The $i$-th component of the vector $Ax$ is \begin{equation*}(Ax)_i=x_{i-1}+2x_i+x_{i+1} , \ i=1, 2, \ldots , n \ \text{ with } x_0=x_{n+1}=0\end{equation*}
Then we have the following: \begin{equation*}\langle x, Ax\rangle=\sum_{i=1}^nx_i(Ax)_i =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )=\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1}\end{equation*}

Is everything correct so far? (Wondering)

Now we have to show that it is positive if the vector $x$ is not the zero vector and equal to $0$ if the vector is the zero vector, right? But how can we do that? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

We have the tridiagonal matrix $A=\begin{pmatrix}2 & 1 & \ldots & 0 \\ 1 & 2 & 1 & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 1 & 2\end{pmatrix}$. I want to show that it is positive definite.

For that it is given the following hint:
1) $\langle x, Ax\rangle \geq 0$
2) $\langle x, Ax\rangle =0 \Rightarrow x=0$ I have done the following:

The $i$-th component of the vector $Ax$ is \begin{equation*}(Ax)_i=x_{i-1}+2x_i+x_{i+1} , \ i=1, 2, \ldots , n \ \text{ with } x_0=x_{n+1}=0\end{equation*}
Then we have the following: \begin{equation*}\langle x, Ax\rangle=\sum_{i=1}^nx_i(Ax)_i =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )=\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1}\end{equation*}

Is everything correct so far? (Wondering)

Now we have to show that it is positive if the vector $x$ is not the zero vector and equal to $0$ if the vector is the zero vector, right? But how can we do that? (Wondering)

Hey mathmari!

How about trying to write it as a sum of squares?
That is, something like $(x_1+x_2)^2 + (x_2 + x_3)^2 + ...$.
Squares are always $\ge 0$ aren't they?
With equality only if all squares are $0$? (Wondering)
 
Klaas van Aarsen said:
How about trying to write it as a sum of squares?
That is, something like $(x_1+x_2)^2 + (x_2 + x_3)^2 + ...$.
Squares are always $\ge 0$ aren't they?
With equality only if all squares are $0$? (Wondering)

Ahh so we have the following, don't we?
\begin{align*}\langle x, Ax\rangle&=\sum_{i=1}^nx_i(Ax)_i \\ & =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )\\ & =\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1} \\ & =x_1 x_{0}+\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} +x_nx_{n+1} \\ & =\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = \sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = 2\sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2 \\ & = \left (\sum_{i=1}^{n-1} x_i^2+x_n^2\right )+2\sum_{i=1}^{n-1}x_i x_{i+1}+\left (x_1^2+\sum_{i=2}^n x_i^2\right ) \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=2}^n x_i^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=1}^{n-1} x_{i+1}^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i^2+2x_i x_{i+1}+ x_{i+1}^2\right )+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i+ x_{i+1}\right )^2+x_1^2+x_n^2 \end{align*}
So we get $$\langle x, Ax\rangle \geq 0 \ \text{ and } \ \langle x, Ax\rangle=0 \iff x_i=0 \ \forall i \iff x=0$$

(Wondering)
 
mathmari said:
Ahh so we have the following, don't we?
\begin{align*}\langle x, Ax\rangle&=\sum_{i=1}^nx_i(Ax)_i \\ & =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )\\ & =\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1} \\ & =x_1 x_{0}+\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} +x_nx_{n+1} \\ & =\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = \sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = 2\sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2 \\ & = \left (\sum_{i=1}^{n-1} x_i^2+x_n^2\right )+2\sum_{i=1}^{n-1}x_i x_{i+1}+\left (x_1^2+\sum_{i=2}^n x_i^2\right ) \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=2}^n x_i^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=1}^{n-1} x_{i+1}^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i^2+2x_i x_{i+1}+ x_{i+1}^2\right )+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i+ x_{i+1}\right )^2+x_1^2+x_n^2 \end{align*}
So we get $$\langle x, Ax\rangle \geq 0 \ \text{ and } \ \langle x, Ax\rangle=0 \iff x_i=0 \ \forall i \iff x=0$$

(Wondering)

(Nod)
 
Klaas van Aarsen said:
(Nod)

Thank you! (Yes)
 

Similar threads

  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K