MHB Show that the tridiagonal matrix is positive definite

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Matrix Positive
AI Thread Summary
The discussion focuses on proving that the tridiagonal matrix A is positive definite. The key steps involve calculating the expression ⟨x, Ax⟩ and showing it is non-negative. The participants suggest expressing the result as a sum of squares, which guarantees non-negativity and indicates that equality holds only when the vector x is the zero vector. The conclusion reached is that ⟨x, Ax⟩ is greater than or equal to zero, and equals zero if and only if x is the zero vector. This confirms that the matrix A is indeed positive definite.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the tridiagonal matrix $A=\begin{pmatrix}2 & 1 & \ldots & 0 \\ 1 & 2 & 1 & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 1 & 2\end{pmatrix}$. I want to show that it is positive definite.

For that it is given the following hint:
1) $\langle x, Ax\rangle \geq 0$
2) $\langle x, Ax\rangle =0 \Rightarrow x=0$ I have done the following:

The $i$-th component of the vector $Ax$ is \begin{equation*}(Ax)_i=x_{i-1}+2x_i+x_{i+1} , \ i=1, 2, \ldots , n \ \text{ with } x_0=x_{n+1}=0\end{equation*}
Then we have the following: \begin{equation*}\langle x, Ax\rangle=\sum_{i=1}^nx_i(Ax)_i =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )=\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1}\end{equation*}

Is everything correct so far? (Wondering)

Now we have to show that it is positive if the vector $x$ is not the zero vector and equal to $0$ if the vector is the zero vector, right? But how can we do that? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
Hey! :o

We have the tridiagonal matrix $A=\begin{pmatrix}2 & 1 & \ldots & 0 \\ 1 & 2 & 1 & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 1 & 2\end{pmatrix}$. I want to show that it is positive definite.

For that it is given the following hint:
1) $\langle x, Ax\rangle \geq 0$
2) $\langle x, Ax\rangle =0 \Rightarrow x=0$ I have done the following:

The $i$-th component of the vector $Ax$ is \begin{equation*}(Ax)_i=x_{i-1}+2x_i+x_{i+1} , \ i=1, 2, \ldots , n \ \text{ with } x_0=x_{n+1}=0\end{equation*}
Then we have the following: \begin{equation*}\langle x, Ax\rangle=\sum_{i=1}^nx_i(Ax)_i =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )=\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1}\end{equation*}

Is everything correct so far? (Wondering)

Now we have to show that it is positive if the vector $x$ is not the zero vector and equal to $0$ if the vector is the zero vector, right? But how can we do that? (Wondering)

Hey mathmari!

How about trying to write it as a sum of squares?
That is, something like $(x_1+x_2)^2 + (x_2 + x_3)^2 + ...$.
Squares are always $\ge 0$ aren't they?
With equality only if all squares are $0$? (Wondering)
 
Klaas van Aarsen said:
How about trying to write it as a sum of squares?
That is, something like $(x_1+x_2)^2 + (x_2 + x_3)^2 + ...$.
Squares are always $\ge 0$ aren't they?
With equality only if all squares are $0$? (Wondering)

Ahh so we have the following, don't we?
\begin{align*}\langle x, Ax\rangle&=\sum_{i=1}^nx_i(Ax)_i \\ & =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )\\ & =\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1} \\ & =x_1 x_{0}+\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} +x_nx_{n+1} \\ & =\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = \sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = 2\sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2 \\ & = \left (\sum_{i=1}^{n-1} x_i^2+x_n^2\right )+2\sum_{i=1}^{n-1}x_i x_{i+1}+\left (x_1^2+\sum_{i=2}^n x_i^2\right ) \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=2}^n x_i^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=1}^{n-1} x_{i+1}^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i^2+2x_i x_{i+1}+ x_{i+1}^2\right )+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i+ x_{i+1}\right )^2+x_1^2+x_n^2 \end{align*}
So we get $$\langle x, Ax\rangle \geq 0 \ \text{ and } \ \langle x, Ax\rangle=0 \iff x_i=0 \ \forall i \iff x=0$$

(Wondering)
 
mathmari said:
Ahh so we have the following, don't we?
\begin{align*}\langle x, Ax\rangle&=\sum_{i=1}^nx_i(Ax)_i \\ & =\sum_{i=1}^nx_i\left (x_{i-1}+2x_i+x_{i+1}\right )\\ & =\sum_{i=1}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^n x_ix_{i+1} \\ & =x_1 x_{0}+\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} +x_nx_{n+1} \\ & =\sum_{i=2}^nx_i x_{i-1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = \sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2+\sum_{i=1}^{n-1} x_ix_{i+1} \\ & = 2\sum_{i=1}^{n-1}x_i x_{i+1}+2\sum_{i=1}^n x_i^2 \\ & = \left (\sum_{i=1}^{n-1} x_i^2+x_n^2\right )+2\sum_{i=1}^{n-1}x_i x_{i+1}+\left (x_1^2+\sum_{i=2}^n x_i^2\right ) \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=2}^n x_i^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} x_i^2+2\sum_{i=1}^{n-1}x_i x_{i+1}+\sum_{i=1}^{n-1} x_{i+1}^2+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i^2+2x_i x_{i+1}+ x_{i+1}^2\right )+x_1^2+x_n^2 \\ & = \sum_{i=1}^{n-1} \left (x_i+ x_{i+1}\right )^2+x_1^2+x_n^2 \end{align*}
So we get $$\langle x, Ax\rangle \geq 0 \ \text{ and } \ \langle x, Ax\rangle=0 \iff x_i=0 \ \forall i \iff x=0$$

(Wondering)

(Nod)
 
Klaas van Aarsen said:
(Nod)

Thank you! (Yes)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top