Show that w is solenoidal having spherical polar coordinates

Click For Summary
SUMMARY

The discussion focuses on demonstrating that the vector field w, expressed in spherical polar coordinates, is solenoidal and irrotational. The divergence of w is shown to be zero, confirming its solenoidal nature, as the φ component does not depend on φ, leading to a partial derivative of zero. The curl of w is also calculated, revealing that if wφ is constant, then w is irrotational. The participants emphasize the importance of correctly interpreting the problem to derive the function of the φ component accurately.

PREREQUISITES
  • Spherical polar coordinates (r, ∅, Ψ)
  • Vector calculus concepts: gradient, divergence, curl
  • Understanding of solenoidal and irrotational vector fields
  • Familiarity with LaTeX for mathematical expressions
NEXT STEPS
  • Study the properties of solenoidal vector fields in depth
  • Learn how to compute the curl of vector fields in spherical coordinates
  • Explore the implications of irrotational fields in physics
  • Practice writing and interpreting mathematical expressions in LaTeX
USEFUL FOR

Students and professionals in physics and engineering, particularly those focusing on fluid dynamics, electromagnetism, or any field requiring an understanding of vector fields in spherical coordinates.

YogiBear
Messages
7
Reaction score
0

Homework Statement


The gradient, divergence and curl in spherical polar coordinates r, ∅, Ψ are
nablaΨ = ∂Φ/∂r * er + ∂Φ/∂∅ * e 1/r + ∂Φ/∂Ψ * eΨ * 1/(r*sin(∅))
nabla * a = 1/r * ∂/∂r(r2*ar) + 1/(r*sin(∅)*∂/∂∅[sin(∅)a] + 1/r*sin(∅) * ∂aΨ/∂Ψ
nabla x a =

|er r*e r*sin(∅)*eΨ |
|∂/∂r ∂/∂∅ ∂/dΨ |
| 1/r2*sin(∅) |ar r*a r*sin(∅)*aΨ |

Where a = ar * er + a*e + aΨ*eΨ

Suppose that the vector field w has the form w = wΨ(r, ∅) eΨ Show that w is
solenoidal and find wΨ(r, ∅), when w is also irrotational. Find a potential for w in this case.
hah..PNG

Homework Equations

The Attempt at a Solution


I started by finding vector potential. however it seems too simple. (Or most likely id id it wrong). In addition i am not sure, if it is even the right way to about it. I can't put in working out of the vector potential i have, as i have trouble with coding it on the forum(My handwriting is not legible). So you can assume i have got it wrong. Any help will be greatly appreciated.
 
Physics news on Phys.org
First.

To show that ω is solenoidal implies that the divergence of the vector field is 0. Thats easy to show:

$$∇·\omega = \frac{1}{r\sin\theta}\; \frac{\partial\omega_\phi(r,\theta)}{\partial\phi}$$

and since the φ component of ω does not depend on φ, it's partial derivative equals 0.

So the vector field is solenoidal.

Second.

We must impose that ×ω=0.
$$∇×\omega=\begin{vmatrix} ê_r & rê_\theta &r\sin\thetaê_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta}& \frac{\partial}{\partial \phi} \\ 0&0&r\sin\theta\omega_\phi\end{vmatrix} \;=\; ê_r \left[ \frac{\partial\omega_\phi}{\partial \theta}r\cos\theta \right] - ê_\theta \left[ \frac{\partial\omega_\phi}{\partial r}r\sin\theta \right] $$

And this is 0 ∀r,φ if ωφ is not really dependent on θ and r. So ωφ=C (is constant on all variables).

And now I am stuck... I really doubt on this second result. I'm sorry, but I'll wait until someone else come check it. Maybe this help you on finding a path.
 
  • Like
Likes   Reactions: YogiBear
marksman95 said:
First.

To show that ω is solenoidal implies that the divergence of the vector field is 0. Thats easy to show:

$$∇·\omega = \frac{1}{r\sin\theta}\; \frac{\partial\omega_\phi(r,\theta)}{\partial\phi}$$

and since the φ component of ω does not depend on φ, it's partial derivative equals 0.

So the vector field is solenoidal.

Second.

We must impose that ×ω=0.
$$∇×\omega=\begin{vmatrix} ê_r & rê_\theta &r\sin\thetaê_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta}& \frac{\partial}{\partial \phi} \\ 0&0&r\sin\theta\omega_\phi\end{vmatrix} \;=\; ê_r \left[ \frac{\partial\omega_\phi}{\partial \theta}r\cos\theta \right] - ê_\theta \left[ \frac{\partial\omega_\phi}{\partial r}r\sin\theta \right] $$

And this is 0 ∀r,φ if ωφ is not really dependent on θ and r. So ωφ=C (is constant on all variables).

And now I am stuck... I really doubt on this second result. I'm sorry, but I'll wait until someone else come check it. Maybe this help you on finding a path.
20150507_201842.jpg

I have figured out part 2, very similar to part one. Cross multiply the matrix, and we get 0. I think I am getting somewhere on part three as well. Thank you. And your LaTeX skills are too good xD
 
MMMM... I think you got that rotational wrong. You cannot cancel those partial derivatives inside the determinant.

Those vectors aren't zero, but their associated components.

Also I think you haven't understood the exercice. It doesn't demand you to show that is irrotational, but to assume it is in order to find out what is the function of the phi component.
 
  • Like
Likes   Reactions: YogiBear
Of course. I rushed to conclusion without reading question fully...

thanks for the help thought, i would have had it completely wrong otherwise.
 

Similar threads

Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 9 ·
Replies
9
Views
7K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
3
Views
11K
  • · Replies 23 ·
Replies
23
Views
4K