Show the proof by induction in the given problem

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Induction Proof
Click For Summary

Homework Help Overview

The discussion revolves around a proof by induction related to the summation of cubes, specifically the expression for the sum of the first \( k+1 \) cubes. Participants are exploring the algebraic manipulation involved in deriving the next term in the sequence.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants are examining the steps involved in factoring and expanding expressions related to the induction proof. Questions arise about specific terms, such as the appearance of \( (k+1)^3 \), and the reasoning behind adding the next term in the sequence.

Discussion Status

There is an active exchange of ideas regarding the algebraic steps in the proof. Some participants provide hints and clarifications, while others seek further understanding of specific manipulations. Multiple interpretations of the steps are being explored without reaching a consensus.

Contextual Notes

Participants are working within the constraints of a proof by induction framework, discussing the validity of their algebraic transformations and the implications of the induction hypothesis.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
See attached
Relevant Equations
Induction
My interest is solely on the highlighted part in red...hmmmmmmm :cool: taken a bit of my time to figure that out...but i got it. Looking for any other way of looking at it;
1671751315037.png

I just realised that the next term would be given by;

##\dfrac{1}{4}(k+1)^2(k+2)^2-\dfrac{1}{4}k^2(k+1)^2##

##=\dfrac{1}{4}(k+1)^2\left[(k+2)^2-k^2\right]##

##=\dfrac{1}{4}(k+1)^2\left[k^2+4k+4-k^2\right]##

##=\dfrac{1}{4}(k+1)^2\left[4k+4\right]##

Therefore adding the ##k## to ##k+1## yields;

##\dfrac{1}{4}k^2(k+1)^2+ \dfrac{1}{4}(k+1)^2\left[4k+4\right]##

##=\dfrac{1}{4}(k+1)^2\left[k^2+4k+4\right]##

Then the rest of the step will follow...this was the only challenging part...any other way of looking at it would be nice. Cheers

Question
If i may ask, how did they get the ##(k+1)^3## on the first line?
 
Last edited:
Physics news on Phys.org
The line in red is just factoring ##\frac{1}{4}(k+1)^2##. The left term leaves a ##k^2##, the right term leaves a ##4(k+1)## which is less visually obvious because factoring fractions is tricky. You can avoid needing to notice clever manipulations. You can just totally expand the expression into a polynomial, and then take your target expression and expand it into a polynomial, and confirm the coefficients line up.
 
chwala said:
Question
If i may ask, how did they get the ##(k+1)^3## on the first line?

Where on the first line?
 
malawi_glenn said:
Where on the first line?
On this line;

##\sum_{r=1}^{k+1} r^3= \dfrac{1}{4}(k+1)^2 +(k+1)^3##
 
chwala said:
On this line;

##\sum_{r=1}^{k+1} r^3= \dfrac{1}{4}(k+1)^2 +(k+1)^3##

Hint, what can ## \displaystyle \sum_{r=1}^{k} r^3 + (k+1)^3## be written as?
1671775584336.png

what do you think "adding the next term" mean?
 
malawi_glenn said:
Hint, what can ## \displaystyle \sum_{r=1}^{k} r^3 + (k+1)^3## be written as?
View attachment 319251
what do you think "adding the next term" mean?

Seen it...you can check post ##1## and see that i know what 'the next term is'...therefore i will just go ahead and add it to previous term as follows;

##\dfrac{1}{4}k^2(k+1)^2+\dfrac{1}{4}(k+1)^2\left[4k+4\right]##

##\dfrac{1}{4}k^2(k+1)^2+4\left[\dfrac{1}{4}(k+1)^2(k+1)\right]##

##=\dfrac{1}{4}k^2(k+1)^2+(k+1)^2 (k+1)##

##\dfrac{1}{4}k^2(k+1)^2+(k+1)^3##

Cheers man!
 
Last edited:
chwala said:
Cheers man!
It means this
## \displaystyle \sum_{r=1}^{k} r^3 + (k+1)^3 = 1 + 2^3 + 3^3 + \cdots + (k-1)^3 + k^3 + (k+1)^3 = \sum_{r=1}^{k+1} r^3 ##.
Thus, we can write
## \displaystyle \sum_{r=1}^{k+1} r^3 = \sum_{r=1}^{k } r^3 + (k+1)^3 = \dfrac{1}{4}k^2(k+1)^2 + (k+1)^3 ##
where we used the induction hypothesis in the last step.
 
Last edited:
  • Like
Likes   Reactions: PeroK and chwala

Similar threads

Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K