Yes, the equivalence classes of ##{R}[x]/\langle p(x) \rangle## are all of the form ##[r(x)]_{p(x)} = r(x) + \{s(x)\cdot p(x)\,\vert \,s(x) \in R[x]\}## which means, one can push all monomials of degree ##m := \operatorname{deg}p## and higher into the ideal. However, it gets a little bit more complicated, if the highest coefficient isn't a unit (and I would have to do the math first). Let's therefore assume the highest coefficient is ##1## and ##p(x) = x^m +\ldots + p_1x+p_0##. Then ##[x^m]_{p(x)}= -[p_{m-1}x^{m-1}]_{p(x)} - \ldots - [p_{1}x]_{p(x)} - [p_{0}]_{p(x)}## which means all elements ##x^n## with ##n \geq m## can be reduced to lower powers. Now multiply the possible coefficients with the degree and you have the number of elements. Or better: ## \{[1]_{p(x)}, \, \ldots \,, [x^{m-1}]_{p(x)} \}## forms a basis of the ##R-## module (or vector space in case ##R## is a field). Of course if ##R## isn't finite, you will still get a finite dimension, but infinitely many elements.