Signs of the trigonometric functions of the angle -200

MattO7766
Messages
2
Reaction score
0
Determine the signs of the trigonometric functions of the angle -200° in standard position.

sin(-200°)
cos(-200°)
tan(-200°)
csc(-200°)
sec(-200°)
cot(-200°)

Information:
Q1= (All Positive)
Q2= (sin csc)
Q3= (tan cot)
Q4= (cos sec)

Answer:
sin(-200°) = Positive
cos(-200°) = Negative
tan(-200°) = Negative
csc(-200°) = Positive
sec(-200°) = Negative
cot(-200°) = Negative

Could someone please help me with this, I'm very confused
 
Physics news on Phys.org
http://planetmath.org/DeterminingSignsOfTrigonometricFunctions.html

Since -200° lies in the second quadrant, then all are positive except for SIN and CSC, as described in the link above. Use the mnemonic device "All Students Take Calculus" as suggested and you will get any question relating to this task 100% on an exam!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top