MHB Simplify expression with exponents

AI Thread Summary
The expression (((4x^6)^3(4y^-8))/((2x)^4(12y^3)^2))^1/2 simplifies to (x/(9y))^7. The process involves applying exponent rules, including multiplying and dividing exponents and converting negative exponents to positive. The final result is derived by simplifying the numerator and denominator separately before taking the square root. It is emphasized that understanding the steps is crucial for mastering similar problems in the future. Mastery of these simplification techniques is essential for advancing in mathematics.
ahmedb
Messages
13
Reaction score
0
simplify and answer should be in positive exponents.
(((4x^6)^3(4y^-8))/((2x)^4(12y^3)^2))^1/2
please help and thanks
 
Mathematics news on Phys.org
Re: simplify

MoneyKing said:
simplify and answer should be in positive exponents.
(((4x^6)^3(4y^-8))/((2x)^4(12y^3)^2))^1/2
please help and thanks
$$ \huge{(}\frac{{(4x^6)^3}4y^{-8}}{(2x)^4(12y^3)^2}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}\frac{{(4^3x^{18})}4y^{-8}}{(2^4x^4)(12^2y^6)}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}\frac{{(64x^{18})}4y^{-8}}{(16x^4)(144y^6)}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}\frac{4x^{14}}{36y^{14}}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}\frac{x^{14}}{9y^{14}}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}(\frac{x}{9y})^{14}\huge{)}^{\frac{1}{2}} $$

$$ (\frac{x}{9y})^{7} $$
 
Re: simplify

You should probably show any work you have tried first so that more importantly we can fix any misconceptions you may have about this process.

If your going any further in math the ability to do the work in this problem will be required.

You may now have the answer, but what you really need is the ability to reach it on your own.
 
Hello, MoneyKing!

$\text{Simplify: }\:\left[\dfrac{(4x^6)^3(4y^{-8})}{(2x)^4(12y^3)^2}\right]^{\frac{1}{2}}$

$\left[\dfrac{(4x^6)^3(4y^{-8})}{(2x)^4(12y^3)^2}\right]^{\frac{1}{2}} \;=\;\;\left[\dfrac{4^3(x^6)^3\cdot 4y^{-8}}{2^4x^4\cdot 12^2(y^3)^2}\right]^{\frac{1}{2}} \;=\;\;\left[\dfrac{64x^{18}\cdot 4y^{-8}}{16x^4\cdot144y^6}\right]^{\frac{1}{2}} $

. . . . . $=\;\;\left[\dfrac{x^{14}}{9y^{14}}\right]^{\frac{1}{2}} \;=\;\;
\dfrac{(x^{14})^{\frac{1}{2}}}{9^{\frac{1}{2}}(y^{14})^{\frac{1}{2}}} \;=\;\;\dfrac{x^7}{3y^7} $
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
5
Views
2K
Replies
3
Views
1K
Replies
5
Views
1K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
14
Views
1K
Replies
7
Views
3K
Back
Top