Simplify expression with exponents

Click For Summary

Discussion Overview

The discussion revolves around simplifying an expression involving exponents and ensuring the final answer is presented with positive exponents. The scope includes mathematical reasoning and technical explanations related to algebraic manipulation of expressions with exponents.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Homework-related

Main Points Raised

  • One participant requests help simplifying the expression \(((4x^6)^3(4y^{-8})/((2x)^4(12y^3)^2))^{1/2}\) and specifies that the answer should be in positive exponents.
  • Another participant provides a step-by-step simplification of the expression, showing intermediate steps and arriving at \((\frac{x}{9y})^{7}\) as the final result.
  • A third participant suggests that the original poster should show their work to address any misconceptions and emphasizes the importance of understanding the process rather than just obtaining the answer.
  • A later reply reiterates the simplification process, confirming the steps taken to reach the final expression of \(\frac{x^7}{3y^7}\).

Areas of Agreement / Disagreement

Participants generally agree on the steps involved in simplifying the expression, but there is no consensus on the necessity of showing work for educational purposes, as one participant emphasizes this point while others focus on the simplification itself.

Contextual Notes

Some steps in the simplification may depend on the interpretation of exponent rules, and there are unresolved aspects regarding the clarity of the original poster's understanding of the process.

ahmedb
Messages
13
Reaction score
0
simplify and answer should be in positive exponents.
(((4x^6)^3(4y^-8))/((2x)^4(12y^3)^2))^1/2
please help and thanks
 
Mathematics news on Phys.org
Re: simplify

MoneyKing said:
simplify and answer should be in positive exponents.
(((4x^6)^3(4y^-8))/((2x)^4(12y^3)^2))^1/2
please help and thanks
$$ \huge{(}\frac{{(4x^6)^3}4y^{-8}}{(2x)^4(12y^3)^2}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}\frac{{(4^3x^{18})}4y^{-8}}{(2^4x^4)(12^2y^6)}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}\frac{{(64x^{18})}4y^{-8}}{(16x^4)(144y^6)}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}\frac{4x^{14}}{36y^{14}}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}\frac{x^{14}}{9y^{14}}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}(\frac{x}{9y})^{14}\huge{)}^{\frac{1}{2}} $$

$$ (\frac{x}{9y})^{7} $$
 
Re: simplify

You should probably show any work you have tried first so that more importantly we can fix any misconceptions you may have about this process.

If your going any further in math the ability to do the work in this problem will be required.

You may now have the answer, but what you really need is the ability to reach it on your own.
 
Hello, MoneyKing!

$\text{Simplify: }\:\left[\dfrac{(4x^6)^3(4y^{-8})}{(2x)^4(12y^3)^2}\right]^{\frac{1}{2}}$

$\left[\dfrac{(4x^6)^3(4y^{-8})}{(2x)^4(12y^3)^2}\right]^{\frac{1}{2}} \;=\;\;\left[\dfrac{4^3(x^6)^3\cdot 4y^{-8}}{2^4x^4\cdot 12^2(y^3)^2}\right]^{\frac{1}{2}} \;=\;\;\left[\dfrac{64x^{18}\cdot 4y^{-8}}{16x^4\cdot144y^6}\right]^{\frac{1}{2}} $

. . . . . $=\;\;\left[\dfrac{x^{14}}{9y^{14}}\right]^{\frac{1}{2}} \;=\;\;
\dfrac{(x^{14})^{\frac{1}{2}}}{9^{\frac{1}{2}}(y^{14})^{\frac{1}{2}}} \;=\;\;\dfrac{x^7}{3y^7} $
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
824
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K