MHB Simplify expression with exponents

ahmedb
Messages
13
Reaction score
0
simplify and answer should be in positive exponents.
(((4x^6)^3(4y^-8))/((2x)^4(12y^3)^2))^1/2
please help and thanks
 
Mathematics news on Phys.org
Re: simplify

MoneyKing said:
simplify and answer should be in positive exponents.
(((4x^6)^3(4y^-8))/((2x)^4(12y^3)^2))^1/2
please help and thanks
$$ \huge{(}\frac{{(4x^6)^3}4y^{-8}}{(2x)^4(12y^3)^2}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}\frac{{(4^3x^{18})}4y^{-8}}{(2^4x^4)(12^2y^6)}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}\frac{{(64x^{18})}4y^{-8}}{(16x^4)(144y^6)}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}\frac{4x^{14}}{36y^{14}}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}\frac{x^{14}}{9y^{14}}\huge{)}^{\frac{1}{2}} $$

$$ \huge{(}(\frac{x}{9y})^{14}\huge{)}^{\frac{1}{2}} $$

$$ (\frac{x}{9y})^{7} $$
 
Re: simplify

You should probably show any work you have tried first so that more importantly we can fix any misconceptions you may have about this process.

If your going any further in math the ability to do the work in this problem will be required.

You may now have the answer, but what you really need is the ability to reach it on your own.
 
Hello, MoneyKing!

$\text{Simplify: }\:\left[\dfrac{(4x^6)^3(4y^{-8})}{(2x)^4(12y^3)^2}\right]^{\frac{1}{2}}$

$\left[\dfrac{(4x^6)^3(4y^{-8})}{(2x)^4(12y^3)^2}\right]^{\frac{1}{2}} \;=\;\;\left[\dfrac{4^3(x^6)^3\cdot 4y^{-8}}{2^4x^4\cdot 12^2(y^3)^2}\right]^{\frac{1}{2}} \;=\;\;\left[\dfrac{64x^{18}\cdot 4y^{-8}}{16x^4\cdot144y^6}\right]^{\frac{1}{2}} $

. . . . . $=\;\;\left[\dfrac{x^{14}}{9y^{14}}\right]^{\frac{1}{2}} \;=\;\;
\dfrac{(x^{14})^{\frac{1}{2}}}{9^{\frac{1}{2}}(y^{14})^{\frac{1}{2}}} \;=\;\;\dfrac{x^7}{3y^7} $
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
5
Views
2K
Replies
3
Views
1K
Replies
5
Views
1K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
14
Views
1K
Replies
7
Views
3K
Back
Top