Simplify Fractions: Problem #69 - July 22, 2013

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
SUMMARY

The forum discussion centers on the mathematical problem of simplifying the expression $$\frac1{\sqrt{12-2\sqrt{35}}}-\frac2{\sqrt{10+2\sqrt{21}}}-\frac1{\sqrt{8+2\sqrt{15}}}$$. Members MarkFL, anemone, and soroban successfully provided correct solutions. Anemone's solution is highlighted as a primary method, while soroban offers an alternate approach, showcasing different techniques for tackling the problem. The discussion emphasizes the importance of showing work in mathematical simplification.

PREREQUISITES
  • Understanding of radical expressions and simplification techniques
  • Familiarity with the properties of square roots
  • Basic algebraic manipulation skills
  • Knowledge of mathematical notation and expressions
NEXT STEPS
  • Study advanced techniques for simplifying radical expressions
  • Explore the use of conjugates in simplifying fractions
  • Learn about the properties of square roots in depth
  • Practice similar mathematical problems involving nested radicals
USEFUL FOR

Mathematics students, educators, and anyone interested in enhancing their skills in simplifying complex expressions and understanding radical mathematics.

Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Without using a calculator and showing your work, simplify $$\frac1{\sqrt{12-2\sqrt{35}}}-\frac2{\sqrt{10+2\sqrt{21}}}-\frac1{\sqrt{8+2\sqrt{15}}}$$.
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) anemone
3) soroban

Solution (from anemone):
First we notice that we can only rewrite the radicand (the sum of two terms) into the form $$\sqrt{m+k\sqrt{n}}=a+b\sqrt{n}$$.

In another word, we could begin to simplify the last two terms first before we start to evaluate the given expression.

Let $$\sqrt{10+2\sqrt{21}}=a+b\sqrt{21}$$.

Squaring both sides to solve for the values for $$ a$$ and $$b$$ we get:

$$10+2\sqrt{21}=a^2+21b^2+2ab\sqrt{21}$$

By equating the coefficient of the $$\sqrt{21}$$ and also the constant we obtain:

$$a=\sqrt{7}$$, $$b=\frac{1}{\sqrt{7}}$$ and hence $$\sqrt{10+2\sqrt{21}}=\sqrt{7}+\left(\frac{1}{\sqrt{7}}\right)\sqrt{21}=\sqrt{7}+\sqrt{3}$$.

We proceed in a similar fashion to simplify $$\sqrt{8+2\sqrt{15}}$$ and get $$\sqrt{8+2\sqrt{15}}=\sqrt{5}+\sqrt{3}$$.

Therefore, we now have

$$\frac{1}{\sqrt{12-2\sqrt{25}}}-\frac{2}{\sqrt{10+2\sqrt{21}}}-\frac{1}{\sqrt{8+2\sqrt{15}}}$$

$$=\frac{1}{\sqrt{12-2\sqrt{25}}}-\frac{2}{\sqrt{7}+\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}$$

What we could do now is to multiply top and bottom of all of these three terms by their conjugates and this yields

$$=\frac{\sqrt{12+2\sqrt{25}}}{(\sqrt{12-2\sqrt{25}})(\sqrt{12+2\sqrt{25}})}-\frac{2(\sqrt{7}-\sqrt{3})}{(\sqrt{7}+\sqrt{3})(\sqrt{7}-\sqrt{3})}-\frac{(1)(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$$

$$=\frac{\sqrt{12+2\sqrt{25}}}{\sqrt{144-140}}-2\left(\frac{\sqrt{7}-\sqrt{3}}{7-3}\right)-\left(\frac{\sqrt{5}-\sqrt{3}}{5-3}\right)$$

$$=\frac{\sqrt{12+2\sqrt{25}}}{2}-2\left(\frac{\sqrt{7}-\sqrt{3}}{4}\right)-\left(\frac{\sqrt{5}-\sqrt{3}}{2}\right)$$

$$=\frac{\sqrt{12+2\sqrt{25}}}{2}-\left(\frac{\sqrt{7}-\sqrt{3}}{2}\right)-\left(\frac{\sqrt{5}-\sqrt{3}}{2}\right)$$

But we know we could simplify $$\sqrt{12+2\sqrt{25}}$$ further to get $$\sqrt{12+2\sqrt{25}}=\sqrt{7}+\sqrt{5}$$ and so

$$=\frac{\sqrt{7}+\sqrt{5}}{2}-\left(\frac{\sqrt{7}-\sqrt{3}}{2}\right)-\left(\frac{\sqrt{5}-\sqrt{3}}{2}\right)$$

$$=\frac{\sqrt{7}+\sqrt{5}-\sqrt{7}+\sqrt{3}-\sqrt{5}+\sqrt{3}}{2}$$

$$=\frac{2\sqrt{3}}{2}$$

$$=\sqrt{3}$$

Alternate solution (from soroban):
\text{Simplify: }\:x \;=\; \frac{1}{\sqrt{12-2\sqrt{35}}} - \frac{2}{\sqrt{10+2\sqrt{21}}} - \frac{1}{\sqrt{8+2\sqrt{15}}}

Note that: .\begin{Bmatrix}12-2\sqrt{35} &=& (\sqrt{7}-\sqrt{5})^2 \\ 10 + 2\sqrt{21} &=& (\sqrt{7}+\sqrt{3})^2 \\ 8 + 2\sqrt{15} &=& (\sqrt{3}+\sqrt{5})^2 \end{Bmatrix}We have:
.. x \;=\;\frac{1}{\sqrt{7}-\sqrt{5}} - \frac{2}{\sqrt{7}+\sqrt{3}} - \frac{1}{\sqrt{3}+\sqrt{5}}

. .x \;=\;\frac{\sqrt{7}+\sqrt{3})(\sqrt{3}+\sqrt{5}) - 2(\sqrt{7}-\sqrt{5})(\sqrt{3}+\sqrt{5}) - (\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{34})}{(\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{3})(\sqrt{3}+\sqrt{5})}The numerator is:

N_x \;=\;(\sqrt{7}+\sqrt{3})(\sqrt{3}+\sqrt{5}) - 2(\sqrt{7}-\sqrt{5})(\sqrt{3}+\sqrt{5}) - (\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{34})

. . . =\;\sqrt{21} + \sqrt{35} + 3 + \sqrt{15} - 2\sqrt{21} - 2\sqrt{35} + 2\sqrt{15} + 10 - 7 - \sqrt{21} + \sqrt{35} + \sqrt{15}

. . . =\;6 + 4\sqrt{15} - 2\sqrt{21} \;=\;2\sqrt{3}(\sqrt{3} + 2\sqrt{5} - \sqrt{7})The denominator is:

D_x \;=\;(\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{3})(\sqrt{3}+\sqrt{5})

. . . =\;(\sqrt{7}-\sqrt{5})(\sqrt{21} + \sqrt{35} + 3 + \sqrt{15})

. . . =\;7\sqrt{3} + 7\sqrt{5} + 3\sqrt{7} + \sqrt{105} - \sqrt{105} - 5\sqrt{7} - 3\sqrt{5} - 5\sqrt{3}

. . . =\;2\sqrt{3} + 4\sqrt{5} - 2\sqrt{7} \;=\;2(\sqrt{3} + 2\sqrt{5} - \sqrt{7})Therefore: .x \;=\;\frac{N_x}{D_x} \;=\;\frac{2\sqrt{3}(\sqrt{3}+2\sqrt{5}-\sqrt{7})}{2(\sqrt{3}+2\sqrt{5} - \sqrt{7})} \;=\; \sqrt{3}
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
791
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K