I Simplify Tricky Equation for Purely Imaginary C with Complex Constants

  • I
  • Thread starter Thread starter thatboi
  • Start date Start date
  • Tags Tags
    Simplifying
AI Thread Summary
The discussion revolves around solving an equation for a purely imaginary value C, where F and G are complex constants. Participants suggest taking logarithms and simplifying the equation by introducing variables A and B. It is noted that with the provided hints, isolating C becomes straightforward. The original poster confirms they successfully solved the equation after receiving guidance. The conversation ends with a request for the origin of the equation.
thatboi
Messages
130
Reaction score
20
Hey all,
I am currently trying to solve the following equation for C:
1659137331786.png

where C is a purely imaginary value, ##F_{+}##, ##F_{-}## and ##G_{+}## and ##G_{-}## are all complex valued constants (so ##G_{+}^{*}## just means complex conjugate of ##G_{+}##. I am not really sure where to start with isolating C, any advice would be greatly appreciated!
 
Mathematics news on Phys.org
Take logarithms of both sides and see if you can solve that equation for C.
 
  • Like
Likes Delta2 and malawi_glenn
Let ##F_+ /F_- = A## and ##\sqrt{ \dfrac{G_-G_+^*}{G_-^*G_+} } = B##

Your equation is ##A^{-C/2} = (-1)^{1-C}B ##

Always do simplifications and change of variables, to see what is going on.
 
Last edited:
  • Like
Likes Vanadium 50, Delta2 and Mondayman
@thatboi , with the two hints given to you above, it is fairly easy to solve for C. Is that working out for you?
 
  • Like
Likes malawi_glenn
phyzguy said:
@thatboi , with the two hints given to you above, it is fairly easy to solve for C. Is that working out for you?
Thanks for the hints I have already worked it out!
 
  • Like
Likes malawi_glenn
Great!

May I ask where this equation came from?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top