MHB *Simultaneous equation 4 variables

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Variables
Click For Summary
The discussion focuses on solving a system of equations for variables x and y in terms of parameters a and b, under the condition that ab ≠ -1. The derived solutions are x = (a + 1) / (ab + 1) and y = a(b + 1) / (ab + 1). Participants explore different methods for solving the equations, including substitution and Cramer's rule, highlighting the equivalence of denominators. The use of determinants in Cramer's rule is noted as a more systematic approach, making it easier to verify results. Overall, the thread emphasizes various techniques for solving simultaneous equations effectively.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Solve the following system for x and y in terms of a and b where $ab\ne - 1$

$\left\{{\frac{x+y-1}{x-y+1}=a
\atop\frac{y-x+1}{x-y+1}=ab}\right.$

Answer is
$x=\frac{a+1}{ab+1}\\y=\frac{a\left(b+1\right)}{\left(ab+1\right)}$

I tried for a hour and?
Noticed the denominators were = but?
 
Last edited:
Mathematics news on Phys.org
karush said:
Solve the following system for x and y in terms of a and b where $ab\ne - 1$

$\left\{{\frac{x+y-1}{x-y+1}=a
\atop\frac{y-x+1}{x-y+1}=ab}\right.$

Answer is
$x=\frac{a+1}{ab+1}\\y=\frac{a\left(b+1\right)}{\left(ab+1\right)}$

I tried for a hour and?
Noticed the denominators were = but?
From the first equation
x + y - 1 = a(x - y + 1)
or
(1 - a)x + (a + 1)y = a + 1

From the second equation:
y - x + 1 = ab(x - y + 1)
or
-(ab + 1)x + (ab + 1)y = ab - 1

If you don't want to match coefficients or use substitution you could always do it using Cramer's rule:
[math]\left ( \begin{matrix} 1 - a & a + 1 \\ -(ab + 1) & ab + 1 \end{matrix} \right ) ~ \left ( \begin{matrix} x \\ y \end{matrix} \right ) = \left ( \begin{matrix} a + 1 \\ ab - 1 \end{matrix} \right )[/math]

So
[math]x = \frac{ \left | \begin{matrix} a + 1 & a + 1 \\ ab - 1 & ab + 1 \end{matrix} \right | }{ \left | \begin{matrix} 1 - a & a + 1 \\ -(ab + 1) & ab + 1 \end{matrix} \right | }[/math]

and
[math]y = \frac{ \left | \begin{matrix} 1 - a & a + 1 \\ -(ab + 1) & ab - 1 \end{matrix} \right | }{ \left | \begin{matrix} 1 - a & a + 1 \\ -(ab + 1) & ab + 1 \end{matrix} \right | }[/math]

It might look bad, but it's more "mechanized" than the other two ways, and easier to check.

-Dan
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
11K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 11 ·
Replies
11
Views
2K