From Ck=[{e^(-Scl)*gamma(N+1)*gamma(N+1+u)}/{gamma(1+u)}]/[{gamma(N+1+a-k)*gamma(N+1+b-k)}/{gamma(1+a-k)*gamma(1+b-k)}](adsbygoogle = window.adsbygoogle || []).push({});

How to prove Ck=[e^(-Scl)*{gamma(1+a-k)*gamma(1+b-k)}]/{gamma(1+u)}

to get Ck=[{gamma(1+a)*gamma(1+b)}/{gamma^2(1+k)*gamma(1+u)}]*e^(Scl)?

by u=[g*Beta*Ec]/[2*(pi)^2]

where the correction of order 1/N may be ignored. Employing the definition of the gamma function ; gamma(N+1+a)=(N+a)(N+a-1)...(1+a)a!

**Physics Forums - The Fusion of Science and Community**

# Single electron transistor at high-temperature

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Single electron transistor at high-temperature

Loading...

**Physics Forums - The Fusion of Science and Community**