MissP.25_5
- 329
- 0
Hello.
Can someone check if I got the answer right?
Find the singularity and the residue.
##f(z)=\frac{e^{-2z}}{(z+1)^2}##
My solution:
##f(z)=\frac{e^{-2z}}{(z+1)^2}##
$$Resf(z)_{|z=-1|}=\lim_{{z}\to{-1}}\frac{d}{dz}((z+1)^2\frac{e^{-2z}}{(z+1)^2})$$
$$\lim_{{z}\to{-1}}-2e^{-2z}=-2e^{2}$$
Can someone check if I got the answer right?
Find the singularity and the residue.
##f(z)=\frac{e^{-2z}}{(z+1)^2}##
My solution:
##f(z)=\frac{e^{-2z}}{(z+1)^2}##
$$Resf(z)_{|z=-1|}=\lim_{{z}\to{-1}}\frac{d}{dz}((z+1)^2\frac{e^{-2z}}{(z+1)^2})$$
$$\lim_{{z}\to{-1}}-2e^{-2z}=-2e^{2}$$
Attachments
Last edited: