Slope of a mountain ridge (Gradient)

  • Thread starter Thread starter Lambda96
  • Start date Start date
  • Tags Tags
    Slope
Click For Summary
The discussion focuses on calculating the gradient and contour lines of the function h(r) = x/√(x²+y²) + 1. The user expresses uncertainty about their calculations for tasks e and f, particularly regarding the shape of contour lines and the conditions for steepest and flattest slopes. They derive the gradient and its magnitude but encounter complex solutions when attempting to find points where the gradient is zero. The conversation concludes that the steepest slope occurs at a maximum gradient of 2 when y=0, while the flattest slope is 0, highlighting the undefined nature of the gradient at the origin. The importance of careful computation and understanding the behavior of the gradient is emphasized.
Lambda96
Messages
233
Reaction score
77
Homework Statement
Write ##h(r)=H## as ##y(H,x)##

and

Calculate steepest and flattest slope with ##|| \nabla h(r) ||##
Relevant Equations
none
Hi

I am not quite sure if I have calculated the whole task correctly, since I am not sure whether I have solved task e correctly and unfortunately have problems with task f

Bildschirmfoto 2023-12-12 um 15.44.42.png

The function h(r) looks like this ##h(r)=\frac{x}{\sqrt{x^2+y^2}}+1##

I got the following for the gradient

##\nabla h(r)=\left(\begin{array}{c} -\frac{x^2}{(x^2+y^2)^{\frac{3}{2}}} + \frac{1}{\sqrt{x^2+y^2}} \\ - \frac{xy}{(x^2+y^2)^{\frac{3}{2}}} \end{array}\right)##

and the plot for contour lines looks like this:

Bildschirmfoto 2023-12-12 um 12.13.22.png


##\textbf{Task e}##

I then solved the equation ##h(r)=H## for y as follows ##y(H,x)= \sqrt{\frac{x^2}{(H-1)^2}-x^2}## The shape of the contour lines in the first square are all straight lines

I could only see that they are straight lines from the contour lines plot and not from the equation above, did I calculate y(H,x) incorrectly?

##\textbf{Task f}##

The amount of the gradient should be calculated as follows

##|| \nabla h(r) ||=\sqrt{\biggl( -\frac{x^2}{(x^2+y^2)^{\frac{3}{2}}} + \frac{1}{\sqrt{x^2+y^2}} \biggr)^2 + \biggl( -\frac{xy}{(x^2+y^2)^{\frac{3}{2}}} \biggr)^2}##

and then got the following

##|| \nabla h(r) ||= \sqrt{\frac{y^2}{(x^2+y^2)^2}}##

For the steepest and flattest slope, I have to insert the points into the above equation where the gradient is zero, so ##\nabla h(r)= \left(\begin{array}{c} 0 \\ 0 \\ \end{array}\right)## I have calculated these points with mathematica and if I have not made a mistake, unfortunately only complex solutions come out

Bildschirmfoto 2023-12-12 um 16.25.08.png

Have I made a mistake in calculating the steepest or flattest ascent or can I only do this with ##|| \nabla h(r) ||##?
 
Physics news on Phys.org
In polar coordinates x = r \cos \theta, y = r \sin \theta for -\pi \leq \theta < \pi we have h(r, \theta) = 1 + \cos \theta. It follows that \nabla h = -\frac{\sin \theta}{r}\mathbf{e}_\theta = - \frac{y}{r^2}(-y/r, x/r)^T and \|\nabla h\| = \frac{|\sin \theta|}{r} = \frac{|y|}{x^2 + y^2}. This is zero whenever y = 0 (and is undefined at the origin).

I suspect the fact that \nabla h has degenerate (ie, non-isolated) zeros is confusing whatever algorithm Mathematica is using to solve \nabla h = 0. Think before you compute!
 
Thank you pasmith for your help 👍

Where the gradient is zero, there is either a maximum and minimum, the magnitude of the gradient is then also zero.

As you have already written, this would be the case for ##y=0##. If I now insert ##y=0## into the equation ##h(r)##, I get ##h(x,0)=\frac{x}{\sqrt{x^2}}+1## and is either zero for ##x<0## or 2 for ##x>0##

So the steepest slope would be 2 and the flattest 0
 
Lambda96 said:
Thank you pasmith for your help 👍

Where the gradient is zero, there is either a maximum and minimum, the magnitude of the gradient is then also zero.

As you have already written, this would be the case for ##y=0##. If I now insert ##y=0## into the equation ##h(r)##, I get ##h(x,0)=\frac{x}{\sqrt{x^2}}+1## and is either zero for ##x<0## or 2 for ##x>0##

So the steepest slope would be 2 and the flattest 0

"Steepest slope" is where the magnitude of the gradient is maximal, and "flattest slope" is where the magnitude of the gradient is minimal. You can see from my earlier post that \|\nabla h\| increases without limit as r \to 0 for y \neq 0 and is zero when y = 0.
 
pasmith said:
This is zero whenever y=0 (and is undefined at the origin).
Do you mean "(except that it is undefined at the origin)"?
 
Thank you pasmith for your help 👍
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...