MHB Smallest possible area of triangle

  • Thread starter Thread starter gazparkin
  • Start date Start date
  • Tags Tags
    Area Triangle
AI Thread Summary
To find the smallest possible area of a right triangle with base and height measurements of 2.7 cm and 3.4 cm, both rounded to one decimal place, the base could be as low as 2.6 cm and the height as low as 3.3 cm. The area is calculated using the formula (1/2) base times height. Substituting the minimum values, the smallest area would be (1/2) * 2.6 cm * 3.3 cm. This results in an area of 4.29 cm².
gazparkin
Messages
17
Reaction score
0
Hi,

I'm trying to work out this question, and the answer I'm coming up with isn't right. Can anyone help me understand the calculation used to work this out?
 

Attachments

  • area Q.jpg
    area Q.jpg
    10.5 KB · Views: 116
Mathematics news on Phys.org
I can't read that nor enlarge it. Can't you just type the probelm in?
 
HallsofIvy said:
I can't read that nor enlarge it. Can't you just type the probelm in?
Yes, sorry it's not larger in the browser. The question is, in this right angled triangle, both measurements (2.7cm and 3.4cm) are given correct to 1 decimal place (d.p). What is the smallest possible area of the triangle?

Thank you :)
 
Okay. I presume you know that the area of such a right triangle is (1/2) base times height. Since the base is 2.7 cm "given to one decimal place", it could be as low as 2.6 cm. The height is 3.4 cm "given to one decimal place" so it could be as low as 3.3 cm. Now can you calculate the smallest area?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top