B Solar Wind Particles, - reaching into Earth's magnetic field?

AI Thread Summary
The solar wind primarily interacts with Earth's magnetic field, resulting in most particles being deflected rather than penetrating deep into the magnetosphere. At 1 astronomical unit (AU), the solar wind's plasma flows at speeds of 250 to 750 km/s with a density of 3 to 10 particles per cubic centimeter. While some particles may reach the magnetosphere, the majority are redirected, with only a small fraction making it deeper into the magnetic field. The pressure exerted by the solar wind at this distance typically ranges from 1 to 6 nPa. Understanding these dynamics is crucial for studying the effects of solar wind on Earth's environment.
Mikael17
Messages
43
Reaction score
5
TL;DR Summary
Solar Wind particles reaching into Earth's magnetic field ?
How many particles (approximately) from the solar wind reach deep into the Earth's magnetic field every second. Possibly measured in mass?
 
Astronomy news on Phys.org
Mikael17 said:
How many particles (approximately) from the solar wind reach deep into the Earth's magnetic field every second. Possibly measured in mass?
What do you mean by "deep"? Most of the solar wind is deflected by the Earth's magnetic field:
When the solar wind encounters Earth, it is deflected by our planet's magnetic shield, causing most of the solar wind's energetic particles to flow around and beyond us. This region that meets and blocks the solar wind is called the magnetosphere.
https://www.jpl.nasa.gov/nmp/st5/SCIENCE/solarwind.html

The Wikipedia article gives some numbers that you could use to calculate the density/flux of the solar wind near the Earth, but before it is deflected by the magnetospnere:
Velocity and density

Near the Earth's orbit at 1 astronomical unit (AU) the plasma flows at speeds ranging from 250 to 750 km/s with a density ranging between 3 and 10 particles per cubic centimeter and temperature ranging from 104 to 106 Kelvin.[45]

On average, the plasma density decreases with the square of the distance from the Sun, see Section 4.2,[46] while the velocity decreases and flattens out at 1 AU, see Figure 5.[46]

Voyager 1 and Voyager 2 reported plasma density n between 0.001 and 0.005 particles/cm3 at distances of 80 to 120 AU, increasing rapidy beyond 120 AU at Heliopause to between 0.05 and 0.2 particles/cm3.[47]

Pressure

At 1 AU, the wind exerts a pressure typically in the range of 1–6 nPa ((1–6)×10−9 N/m2),[48] although it can readily vary outside that range.

The ram pressure is a function of wind speed and density. The formula is

P = m p ⋅ n ⋅ V 2 = 1.6726 × 10 − 27 k g ⋅ n ⋅ V 2 {\displaystyle P=m_{\text{p}}\cdot n\cdot V^{2}=\mathrm {1.6726\times 10^{-27}\,kg} \cdot n\cdot V^{2}}

where mp is the proton mass, pressure P is in Pa (pascals), n is the density in particles/cm3 and V is the speed in km/s of the solar wind.[49]
https://en.wikipedia.org/wiki/Solar_wind
 
  • Like
Likes Delta Prime
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
Both have short pulses of emission and a wide spectral bandwidth, covering a wide variety of frequencies: "Fast Radio Bursts (FRBs) are detected over a wide range of radio frequencies, including frequencies around 1400 MHz, but have also been detected at lower frequencies, particularly in the 400–800 MHz range. Russian astronomers recently detected a powerful burst at 111 MHz, expanding our understanding of the FRB range. Frequency Ranges: 1400 MHz: Many of the known FRBs have been detected...
Back
Top