B Solar Wind Particles, - reaching into Earth's magnetic field?

AI Thread Summary
The solar wind primarily interacts with Earth's magnetic field, resulting in most particles being deflected rather than penetrating deep into the magnetosphere. At 1 astronomical unit (AU), the solar wind's plasma flows at speeds of 250 to 750 km/s with a density of 3 to 10 particles per cubic centimeter. While some particles may reach the magnetosphere, the majority are redirected, with only a small fraction making it deeper into the magnetic field. The pressure exerted by the solar wind at this distance typically ranges from 1 to 6 nPa. Understanding these dynamics is crucial for studying the effects of solar wind on Earth's environment.
Mikael17
Messages
43
Reaction score
5
TL;DR Summary
Solar Wind particles reaching into Earth's magnetic field ?
How many particles (approximately) from the solar wind reach deep into the Earth's magnetic field every second. Possibly measured in mass?
 
Astronomy news on Phys.org
Mikael17 said:
How many particles (approximately) from the solar wind reach deep into the Earth's magnetic field every second. Possibly measured in mass?
What do you mean by "deep"? Most of the solar wind is deflected by the Earth's magnetic field:
When the solar wind encounters Earth, it is deflected by our planet's magnetic shield, causing most of the solar wind's energetic particles to flow around and beyond us. This region that meets and blocks the solar wind is called the magnetosphere.
https://www.jpl.nasa.gov/nmp/st5/SCIENCE/solarwind.html

The Wikipedia article gives some numbers that you could use to calculate the density/flux of the solar wind near the Earth, but before it is deflected by the magnetospnere:
Velocity and density

Near the Earth's orbit at 1 astronomical unit (AU) the plasma flows at speeds ranging from 250 to 750 km/s with a density ranging between 3 and 10 particles per cubic centimeter and temperature ranging from 104 to 106 Kelvin.[45]

On average, the plasma density decreases with the square of the distance from the Sun, see Section 4.2,[46] while the velocity decreases and flattens out at 1 AU, see Figure 5.[46]

Voyager 1 and Voyager 2 reported plasma density n between 0.001 and 0.005 particles/cm3 at distances of 80 to 120 AU, increasing rapidy beyond 120 AU at Heliopause to between 0.05 and 0.2 particles/cm3.[47]

Pressure

At 1 AU, the wind exerts a pressure typically in the range of 1–6 nPa ((1–6)×10−9 N/m2),[48] although it can readily vary outside that range.

The ram pressure is a function of wind speed and density. The formula is

P = m p ⋅ n ⋅ V 2 = 1.6726 × 10 − 27 k g ⋅ n ⋅ V 2 {\displaystyle P=m_{\text{p}}\cdot n\cdot V^{2}=\mathrm {1.6726\times 10^{-27}\,kg} \cdot n\cdot V^{2}}

where mp is the proton mass, pressure P is in Pa (pascals), n is the density in particles/cm3 and V is the speed in km/s of the solar wind.[49]
https://en.wikipedia.org/wiki/Solar_wind
 
  • Like
Likes Delta Prime
Today at about 4:30 am I saw the conjunction of Venus and Jupiter, where they were about the width of the full moon, or one half degree apart. Did anyone else see it? Edit: The moon is 2,200 miles in diameter and at a distance of 240,000 miles. Thereby it subtends an angle in radians of 2,200/240,000=.01 (approximately). With pi radians being 180 degrees, one radian is 57.3 degrees, so that .01 radians is about .50 degrees (angle subtended by the moon). (.57 to be more exact, but with...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Back
Top