(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A long, non conducting, solid cylinder of radius 4.2 cm has a nonuniform volume charge density ρ = Ar^2, a function of the radial distance r from the cylinder axis. A = 2.5 µC/m5.

(a) What is the magnitude of the electric field at a radial distance of 3.2 cm from the axis of the cylinder?

(b) What is the magnitude of the electric field at a radial distance of 5.2 cm from the axis of the cylinder?

2. Relevant equations

e0 Ø = charge enclosed ; e0 is the permittivity constant 8.85e-12 and Ø can be the flux

e0 E(2π r L) = λ L ; λ is the linear charge density

3. The attempt at a solution

I thought that I could just integrate Ar^2 twice, which would give me λ. Then I could multiply by the height of the cylinder, L. After I did all that I arrived at this:

E=(Ar^3) / (24e0) with e0 being the permittivity constant.

The correct form would have me do this though:

charge enclosed = ∫ 2π r L (Ar^2) dr ; from 0 to r

= 2π L A ∫ r^3 dr ; from 0 to r

If you integrate that and solve for E you get this:

E=(Ar^3) / (4e0) <----- This gives the correct answer.

Can someone explain to me why the method I'm using wrong? Is there some constant I am missing in my method? Or is it just wrong?

And this is also my first post here on Physics Forums? Please tell me if I am doing something wrong so I can correct it in any future post.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Solid cylinder with nonuniform volume charge density?

**Physics Forums | Science Articles, Homework Help, Discussion**