Solution of a certain NxN matrix, when N->∞

  • Thread starter Thread starter onkel_tuca
  • Start date Start date
  • Tags Tags
    Matrix
Click For Summary
The discussion centers on solving a specific NxN Vandermonde matrix as N approaches infinity, where the solution vector components converge to certain values. The matrix elements grow large, complicating direct computation of solutions, but numerical evidence suggests convergence patterns for the solution vector. The user has identified that the first component of the solution vector approaches 1/2 as N increases. The task has been reformulated to finding a polynomial that fits the relationship between the matrix elements and the desired outputs. This approach leverages known properties of Vandermonde matrices to potentially simplify the solution process.
onkel_tuca
Messages
6
Reaction score
0
Hello fellow nerds,

I've come across a math problem, where I'd like to find the solution vector of a NxN square matrix. It is possible to find a solution for a given N, albeit numbers in the matrix become very large for any N>>1, and numbers in the solution vector become very small. So it's not easy to compute solutions. Anyhow I realized that the components of the solution vector seem to converge and I'm asking myself if it's possible to write down the solution for N->∞.

Here's the matrix:

\begin{equation}
\begin{pmatrix}
1&-2&[-2]^2&\dots&[-2]^{N-1}\\
1&-6&[-6]^2&\dots&[-6]^{N-1}\\
1&-12&[-12]^2&\dots&[-12]^{N-1}\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
1&-N(N+1)&[-N(N+1)]^2&\dots&[-N(N+1)]^{N-1}
\end{pmatrix}
\begin{pmatrix}
a_1\\
a_3\\
a_5\\
\vdots\\
a_{2N-1}
\end{pmatrix}=
\begin{pmatrix}
1/3\\
1/5\\
1/7\\
\vdots\\
\frac 1 {2N+1}
\end{pmatrix}
\end{equation}

or:

\begin{eqnarray}
\sum_{k=1}^{N}a_{2k-1} \left[-l(l+1)\right]^{k-1}=\frac 1{2l+1}\;,
\end{eqnarray}

for all l≤N.

I'm looking for the vector a (the numbering of the index is indeed arbitrary). For instance for N=1, one finds a1=1/3. For N=2 one finds a1=2/5 and a3=1/30. And so on. I already found that a1→1/2 for N→∞. When I look at the numerical solutions, the other ai also seem to converge slowly, see the following plot:

agshku78.gif


But I cannot think of a way to find these values without resorting to numerics.

Cheers, Max
 
Last edited:
Physics news on Phys.org
onkel_tuca said:
But I cannot think of a way to find these values without resorting to numerics.
Your matrix is a so-called Vandermonde matrix. A lot is known about matrices of this type, so now you have a term to search for. Since in the second column the entries are all distinct, it can be explicitly inverted, see the references in the link. (Inverting the matrix may not be the best idea, however.)
 
  • Like
Likes onkel_tuca and jedishrfu
Thanks for the hint! This means I can rephrase the task to:

Find the polynomial
$$P(x)=a_1+a_3 x+a_5 x^2+...\;,$$
where
$$P(-l(l+1))=\frac 1 {2l+1}$$
for all natural l>0.
The sampling points are all on the curve
$$f(x)=\frac 1 {\sqrt{1-4x}}\;.$$
 
Last edited:
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
27
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K