Solution verification of ODE using Frobenius' method

Click For Summary
The discussion revolves around verifying the solution of a weakly singular ordinary differential equation (ODE) using Frobenius' method. The initial solution diverges from the book's answer, leading to confusion regarding the coefficients derived from the series expansion. The key issue identified is the incorrect handling of the term associated with the coefficient \( b_0 \), which should be set to \( C/3 \) to align with the book's solution. This adjustment resolves the discrepancy, confirming that the book's solution is indeed correct. The final expression for the solution matches that provided in the textbook after this correction.
psie
Messages
315
Reaction score
40
Homework Statement
Determine for ##t>0## all solutions ##x(t)## of the equation ##2t^2x''+3tx'-(1+t)x=0##.
Relevant Equations
The Frobenius method (see e.g. Wikipedia).
I have no problems with solving this exercise, but my solution disagrees slightly with that given in the answers in the back of the book, and I do not know who's correct.

First, we rewrite the equation as $$x''+\frac{3}{2t}x'-\frac{(1+t)}{2t^2}x=0.\tag1$$ We recognize that this is so-called weakly singular, i.e. the coefficients in front of ##x'## has at most a simple pole and that in front of ##x## at most a double pole. The first term in the Laurent expansion of the coefficients are ##\frac{3}{2}## and ##-\frac{1}{2}## respectively. Thus the indicial polynomial reads $$\mu(\mu-1)+\frac{3}{2}\mu-\frac{1}{2},$$ which has roots ##-1## and ##\frac{1}{2}##. Since these do not differ by an integer, our two linearly independent solutions will be of the form $$y(t)=\sum_{k=0}^\infty a_k t^{k-1}\quad\text{and}\quad z(t)=\sum_{k=0}^\infty b_k t^{k+\frac{1}{2}}.$$ I will only solve for the coefficients ##b_k##, since I get the answer as in the book for the coefficients ##a_k##. We have that the first and second derivative of ##z(t)## are $$z'(t)=\sum_{k=0}^\infty \left(k+\frac{1}{2}\right) b_k t^{k-\frac{1}{2}}\quad\text{and}\quad z''(t)=\sum_{k=0}^\infty \left(k+\frac{1}{2}\right)\left(k-\frac{1}{2}\right)b_k t^{k-\frac{3}{2}}.$$ Plugging these into the equation ##(1)##, we get \begin{align}
\sum_{k=0}^\infty \left(k+\frac{1}{2}\right)\left(k-\frac{1}{2}\right)b_k t^{k-\frac{3}{2}}&+\sum_{k=0}^\infty \frac{3}{2}\left(k+\frac{1}{2}\right)b_k t^{k-\frac{3}{2}} -\sum_{k=0}^\infty \frac{1}{2} b_k t^{k-\frac{3}{2}}\nonumber \\ &- \sum_{k=0}^\infty \frac{1}{2} b_k t^{k-\frac{1}{2}}=0 \nonumber
\end{align}
We can bring the powers of ##t^{k-\frac{3}{2}}## under a single sum, so the equation reads
$$\sum_{k=0}^\infty \left(\left(k+\frac{1}{2}\right)\left(k-\frac{1}{2}\right)+\frac{3}{2}\left(k+\frac{1}{2}\right)-\frac{1}{2}\right)b_k t^{k-\frac{3}{2}}-\sum_{k=0}^\infty \frac{1}{2} b_k t^{k-\frac{1}{2}}=0.$$ Here we can see that the first term in the first sum vanishes, so it really starts from ##k=1##, i.e. $$\sum_{k=1}^\infty \Big(\ldots\Big)b_k t^{k-\frac{3}{2}}-\sum_{k=0}^\infty \frac{1}{2} b_k t^{k-\frac{1}{2}}=0.$$ Re-indexing the first sum so that it starts from ##k=0## again, we get $$\sum_{k=0}^\infty \left(\left(k+\frac{3}{2}\right)\left(k+\frac{1}{2}\right)+\frac{3}{2}\left(k+\frac{3}{2}\right)-\frac{1}{2}\right)b_{k+1} t^{k-\frac{1}{2}}-\sum_{k=0}^\infty \frac{1}{2} b_k t^{k-\frac{1}{2}}=0.$$ Here we can again write everything under a single sum and since that sum equals zero, the coefficients vanish. You can read off the recurrence relation from the previous equation, it is \begin{align}
&\qquad&\frac{1}{2}b_k&=\left(\left(k+\frac{3}{2}\right)\left(k+\frac{1}{2}\right)+\frac{3}{2}\left(k+\frac{3}{2}\right)-\frac{1}{2}\right)b_{k+1} \nonumber\\
&\iff&b_k&=(k+1)(2k+5)b_{k+1} \nonumber
\end{align}
We see that ##b_0## is quite arbitrary, so put ##b_0=C##, then $$b_1=\frac{C}{5},\quad b_2=\frac{C}{2\cdot5\cdot 7},\quad b_3=\frac{C}{2\cdot 3\cdot5\cdot 7\cdot 9},\quad \ldots.$$ We reach the conclusion that $$b_k=\frac{C}{k!(2k+3)!!},\quad k=1,2,\ldots.$$So the solution reads $$Ct^{\frac{1}{2}}\left(1+\sum_{k=1}^\infty\frac{t^k}{k!(2k+3)!!}\right).$$ The solution given in the book is $$Ct^{\frac{1}{2}}\left(\sum_{k=0}^\infty\frac{t^k}{k!(2k+3)!!}\right).$$
This is not the same as my solution. Any ideas?
 
Physics news on Phys.org
psie said:
so put ##b_0=C##, then $$b_1=\frac{C}{5},\quad b_2=\frac{C}{2\cdot5\cdot 7},\quad b_3=\frac{C}{2\cdot 3\cdot5\cdot 7\cdot 9},\quad \ldots.$$ We reach the conclusion that $$b_k=\frac{C}{k!(2k+3)!!},\quad k=1,2,\ldots.$$
This is wrong. The ##(2k + 5)## term starts at 5 when ##k=0## so it gives rise to a factor ##1/(5\cdot 7 \cdot \ldots \cdot(2k + 3)) \neq 1/(3\cdot 5\cdot \ldots \cdot (2k + 3)) = 1/(2k +3)!!##
 
You're right, I was wrong there. To resolve this, I am tempted to just write ##b_0=C/3##, yet this doesn't feel right for some reason. The solution given in the book confuses me.
 
psie said:
You're right, I was wrong there. To resolve this, I am tempted to just write ##b_0=C/3##, yet this doesn't feel right for some reason. The solution given in the book confuses me.
Yes, you solve it by letting ##b_0 = C/3## … and then you get the expression from the book since ##0!(2\cdot 0 +3)!! = 3##.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...