Solve cos 6x=(1/2) for principal values in degree

  • Context: MHB 
  • Thread starter Thread starter blake1
  • Start date Start date
  • Tags Tags
    Cos Degree
Click For Summary
SUMMARY

The equation cos 6x = (1/2) yields principal values for x in the interval 0 ≤ x < 2π. The solutions for 6x are derived from the angles where cos θ = (1/2), specifically at θ = π/3 and θ = 5π/3, leading to multiple values for x: π/18, 5π/18, 7π/18, 11π/18, 13π/18, 17π/18, 19π/18, 23π/18, 25π/18, 29π/18, 31π/18, and 35π/18. Converting these radian measures to degrees results in corresponding values of 10°, 50°, 70°, 110°, 130°, 170°, 190°, 230°, 250°, 290°, 310°, and 350°.

PREREQUISITES
  • Understanding of trigonometric functions, specifically cosine.
  • Knowledge of solving trigonometric equations.
  • Familiarity with angle conversion between radians and degrees.
  • Basic algebra skills for manipulating equations.
NEXT STEPS
  • Study the unit circle to understand the values of trigonometric functions at key angles.
  • Learn about periodicity in trigonometric functions to solve equations with multiple solutions.
  • Explore the concept of inverse trigonometric functions for solving equations like sin x = k or tan x = k.
  • Practice converting between radians and degrees in various mathematical contexts.
USEFUL FOR

Students studying trigonometry, educators teaching trigonometric equations, and anyone needing to solve cosine equations for principal values.

blake1
Messages
1
Reaction score
0
cos 6x=(1/2)
 
Mathematics news on Phys.org
blake said:
cos 6x=(1/2)

note $\cos{\theta} = \dfrac{1}{2}$ at $\theta = \dfrac{\pi}{3} \text{ and } \dfrac{5\pi}{3}$

$0 \le x < 2\pi \implies 0 \le 6x < 12\pi$

$\cos(6x) = \dfrac{1}{2} \implies 6x = \dfrac{\pi}{3} \, , \, \dfrac{5\pi}{3} \, , \, \dfrac{7\pi}{3} \, , \, \dfrac{11\pi}{3} \, , \, \dfrac{13\pi}{3} \, , \, \dfrac{17\pi}{3}\, , \, \dfrac{19\pi}{3} \, , \, \dfrac{23\pi}{3} \, , \, \dfrac{25\pi}{3} \, , \, \dfrac{29\pi}{3} \, , \, \dfrac{31\pi}{3} \, , \, \dfrac{35\pi}{3}$

$x = \dfrac{\pi}{18} \, , \, \dfrac{5\pi}{18} \, , \, \dfrac{7\pi}{18} \, , \, \dfrac{11\pi}{18} \, , \, \dfrac{13\pi}{18} \, , \, \dfrac{17\pi}{18}\, , \, \dfrac{19\pi}{18} \, , \, \dfrac{23\pi}{18} \, , \, \dfrac{25\pi}{18} \, , \, \dfrac{29\pi}{18} \, , \, \dfrac{31\pi}{18} \, , \, \dfrac{35\pi}{18}$
 
Skeeter's answer is, of course, in radians. To get the answer in degrees remember that \pi radians is 180 degrees. That is, \frac{180}{\pi}= 1 so \frac{\pi}{18} radians is the same as \frac{\pi}{18}\frac{180}{\pi}= 10 degrees.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K