MHB Solve cos 6x=(1/2) for principal values in degree

  • Thread starter Thread starter blake1
  • Start date Start date
  • Tags Tags
    Cos Degree
Click For Summary
To solve the equation cos 6x = 1/2, the principal values of 6x are found at angles where cos equals 1/2, specifically at π/3 and 5π/3. This leads to multiple solutions for x within the range of 0 to 2π, including values such as π/18, 5π/18, and 17π/18. Converting these radian measures to degrees results in corresponding angles of 10°, 50°, and 170°. The complete set of solutions in degrees includes 10°, 50°, 70°, 110°, 130°, 170°, 190°, 230°, 250°, 290°, 310°, and 350°. The discussion emphasizes the importance of converting radian measures to degrees for clarity.
blake1
Messages
1
Reaction score
0
cos 6x=(1/2)
 
Mathematics news on Phys.org
blake said:
cos 6x=(1/2)

note $\cos{\theta} = \dfrac{1}{2}$ at $\theta = \dfrac{\pi}{3} \text{ and } \dfrac{5\pi}{3}$

$0 \le x < 2\pi \implies 0 \le 6x < 12\pi$

$\cos(6x) = \dfrac{1}{2} \implies 6x = \dfrac{\pi}{3} \, , \, \dfrac{5\pi}{3} \, , \, \dfrac{7\pi}{3} \, , \, \dfrac{11\pi}{3} \, , \, \dfrac{13\pi}{3} \, , \, \dfrac{17\pi}{3}\, , \, \dfrac{19\pi}{3} \, , \, \dfrac{23\pi}{3} \, , \, \dfrac{25\pi}{3} \, , \, \dfrac{29\pi}{3} \, , \, \dfrac{31\pi}{3} \, , \, \dfrac{35\pi}{3}$

$x = \dfrac{\pi}{18} \, , \, \dfrac{5\pi}{18} \, , \, \dfrac{7\pi}{18} \, , \, \dfrac{11\pi}{18} \, , \, \dfrac{13\pi}{18} \, , \, \dfrac{17\pi}{18}\, , \, \dfrac{19\pi}{18} \, , \, \dfrac{23\pi}{18} \, , \, \dfrac{25\pi}{18} \, , \, \dfrac{29\pi}{18} \, , \, \dfrac{31\pi}{18} \, , \, \dfrac{35\pi}{18}$
 
Skeeter's answer is, of course, in radians. To get the answer in degrees remember that \pi radians is 180 degrees. That is, \frac{180}{\pi}= 1 so \frac{\pi}{18} radians is the same as \frac{\pi}{18}\frac{180}{\pi}= 10 degrees.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K