B Cosine of 1 degree and cosine of 60 degrees?

Click For Summary
The discussion centers on understanding the cosine values for 1 degree and 60 degrees. Cosine of 1 degree is approximately 0.9998, which can be derived using power series expansion or small angle approximations. The cosine of 60 degrees is established as 1/2, which is straightforward through basic geometry involving a right triangle. The side lengths of a 30-60-90 triangle are explained using the properties of an equilateral triangle, where the hypotenuse is 2, the opposite side is 1, and the adjacent side is √3. Overall, the conversation emphasizes the importance of trigonometric principles and geometric understanding in calculating these values.
  • #31
pbuk said:
Yes, you are obsessed with plotting graphs, all your questions are about plotting graphs but you cannot learn anything this way.

If you don't understand why the base of that triangle is ##\sqrt{3} ## long then you are not ready for sine and cosine yet, you need to start with Pythagoras. This course should do:
https://www.khanacademy.org/math/geometry/hs-geo-trig
So this points back to some of the simpler Geometry you study in high school, about right triangles, some regular polygons, equilateral triangles.
 
Mathematics news on Phys.org
  • #32
pasmith said:
Take an equilateral triangle of side 2. Cut it in half along a bisector.
I think you really meant "sides o three"? Two of the sides become hypotenuses of the two new triangles after bisecting the equilat. into the two right triangles.
 
  • #33
pasmith said:
Take an equilateral triangle of side 2. Cut it in half along a bisector.
symbolipoint said:
I think you really meant "sides o three"? Two of the sides become hypotenuses of the two new triangles after bisecting the equilat. into the two right triangles.
No, @pasmith meant what he wrote; namely, an equilateral triangle whose sides are of length 2.
triangle.png


The angle at the lower left is 60°, so ##\cos(60°) = \frac 1 2##.
 
  • Like
Likes anuttarasammyak, pbuk and Charles Link
  • #34
pairofstrings said:
In a right-angled triangle 30 - 60 - 90, why adjacent side is given 1√3 unit, its hypotenuse 2 units and its opposite side is 1 unit?
Pytagoras's theorem
a^2+b^2=c^2
says for this case
1^2+\sqrt{3}^2=2^2
You can easily find proof of Pytagoras's theorem on Web.

You can make a equilateral triangle from the two of these triangles then you will find the angles are 30- 60- 90 as shown in post #33.
 
  • #35
pairofstrings said:
Why is cos (1)° = 0.9998?
If you have got understood the formula
\cos2\theta=2cos^2\theta-1
we can make use of it sequentially to get half-angle, quarter angle, one eighth angle,... of cosine.
The proof of the formula is easily found in the web.

Starting from cos 60 degree = 1/2, cos30, cos15, cos(15/2), cos(15/4),cos(15/8), cos(15/16)

Thus we can calculate value of cos (15/16) degree and may hope it an approximate value of cos 1 degree. Please try it if you have an interest in this method.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
6K
  • · Replies 41 ·
2
Replies
41
Views
5K