MHB Solve Differential Eq: xe^-1/(k+e^-1) for x, k, t

AI Thread Summary
The differential equation for the population of organisms, represented as dx/dt = xe^-t/(k+e^-t), can be solved by recognizing that e^-t is a variable dependent on time. By integrating the equation, the solution is derived as x(t) = 10e^(e^-t/(k+e^-t)t), with the initial condition x(0) = 10. The solution can also be expressed in a simplified form as x(t) = 10e^(t/(ke + 1)). This highlights the relationship between the population x, the constant k, and time t. The discussion emphasizes the importance of correctly identifying the variable in the exponential term for accurate solutions.
Shah 72
MHB
Messages
274
Reaction score
0
The number of organisms in a population at time t is denoted by x. Treating x as a continuous variable, the differential equation satisfied by x and t is dx/dt= xe^-1/(k+e^-1), where k is a positive constant..
Given that x =10 when t=0 solve the differential equation, obtaining a relation between x, k and t.
Pls help. Iam not able to solve this
 
Mathematics news on Phys.org
Shah 72 said:
The number of organisms in a population at time t is denoted by x. Treating x as a continuous variable, the differential equation satisfied by x and t is dx/dt= xe^-1/(k+e^-1), where k is a positive constant..
Given that x =10 when t=0 solve the differential equation, obtaining a relation between x, k and t.
Pls help. Iam not able to solve this
I was able to solve it. I have done a silly mistake of writing e^-1. It's actually e^-t
 
Why in the world is a thread titled "differential equations" posted under Pre-Calculus?!

Shah 72, cogratulations on being able to do this.

For others who might be interested (and I really can't resist!):
Since $\frac{e^{-1}}{k+ e^{-1}}$ is a constant with respect to the variable, x, we can let $A= \frac{e^{-1}}{k+ e^{-1}}$ and write the equation as
$\frac{dx}{dt}= Ax$.

Then $\frac{dx}{x}= Adt$.

Integrating both sides, $ln(x)= At+ C$.

Taking the exponential of both sides, $x(t)= e^{At+ C}= C'e^{At}$
where $C'= e^C$ (but since C is an arbitrary constant so is C').

We are also told that x(0)= 10. $x(0)= C'e^0= C'= 10$ so
$x(t)= 10e^{At}= 10e^{\frac{e^{-1}t}{k+ e^{-1}}}$

We could also multiply both numerator and denominator of the exponent by $e$ and write the solution as
$x(t)= 10e^{\frac{t}{ke+ 1}}$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top