MHB Solve for frequency & angle in dispersion equation

AI Thread Summary
The discussion focuses on solving for frequency (f) and angle (theta) in the equation x = sin[(pi*f*W)/c * sin(theta)] / [(pi*f*W)/c * sin(theta)]. The user seeks assistance due to confusion with the "arcsin of arcsin" concept. It is clarified that W and c are constants, while f and W are variables representing frequency and source width, respectively. The user aims to calculate f and theta based on known values of x, W, and theta, or x, f, and W. The conversation emphasizes the need for mathematical guidance in rearranging the equation for these variables.
NiToNi
Messages
2
Reaction score
0
OK I'm about to grow (more) gray hairs...

Could some friendly soul smarter than myself kindly help me solve for both f and theta respectively in the following equation, please:

x = sin[ (pi*f*W)/c * sin(theta) ] / [ (pi*f*W)/c * sin(theta) ]

Getting stuck at "arcsin of arcsin" sort of thing...

Many thanks in advance (Nod)

Nick
 
Mathematics news on Phys.org
NiToNi said:
OK I'm about to grow (more) gray hairs...

Could some friendly soul smarter than myself kindly help me solve for both f and theta respectively in the following equation, please:

x = sin[ (pi*f*W)/c * sin(theta) ] / [ (pi*f*W)/c * sin(theta) ]

Getting stuck at "arcsin of arcsin" sort of thing...

Many thanks in advance (Nod)

Nick

W and c are constant, am I right?

And it should look like $x = \frac{\sin[ \frac{\pi \cdot f \cdot W}{c}\ \cdot \;\sin(\theta) ] }{ \frac{\pi \cdot f \cdot W}{c}\ \cdot \;\sin(\theta)}$ ?
 
Last edited:
Hi Mathick,

Thanks for your reply :)

Your rearranging is correct - that's what it should look like.

However f and W are not constants per se. f is frequency (Hz) and W is source width (m), both of which are (positive) variables.

What I probably should have said though is that x is a ratio (power factor) so values are between 0 and 1:

0 < x < 1

As the equation is arranged now, I can calculate the power factor (x) knowing f, W and theta. What I am trying to do is solve also for f and W so I can calculate:

a. f knowing x, W and theta;

b.theta knowing x, f and W

Does thatn make sense?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top