Solve for ##x## in the given logarithmic equation

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Logarithmic
chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
Find ##x## to three significant figures given;

$$\frac{1}{log_x 2}+ \frac{1}{log_x 3}+\frac{1}{log_x 6}= 3.6$$
Relevant Equations
Logarithms (change of base)
##\frac{1}{log_x 2}##+ ##\frac{1}{log_x 3}##+##\frac{1}{log_x 6}##=## 3.6##
##log_2x + log_3x+log_6x =3.6##
##log_2x ##+##\frac{log_2x}{log_2 3}##+##\frac{log_2x}{log_2 6}##=##3.6##
##log_2x ##[1+ ##\frac{1}{1.58496}##+##\frac{1}{2.58496}]##=##3.6##
hmmmm it took me some time here to note that,
(##log_2x ##)×(##2.01778##)=##3.6## (1)

i was stuck on thinking that ##log_2 2.01778x##= ##3.6 ##, ##→2^{3.6} = 2.01778x ## which is a wrong approach.

Therefore, from (1) above, we shall have;
##log_2x ##=##\frac{3.6}{2.01778}##
##log_2x ##=##1.78413##
##→2^{1.78413}## = ##x##
##x=3.44## bingo,

I am seeking any other alternative method...
 
Last edited:
  • Like
Likes Delta2 and PeroK
Physics news on Phys.org
I don't see anything better. Your solution looks good.
 
  • Like
Likes Delta2
Cheers Perok, great day...
 
  • Like
Likes Delta2
So in essence, ##log_2 x[2]##≠##log_2 2x##...
 
Last edited:
chwala said:
So in essence, ##log_2 x[2]##≠##log_2 2x##...
What does ##\log_2 x[2]## mean?
##\log_2(2x) = \log_2(2) + \log_2(x) = 1 + \log_2(x)##
 
Mark44 said:
What does ##\log_2 x[2]## mean?
##\log_2(2x) = \log_2(2) + \log_2(x) = 1 + \log_2(x)##
I meant ##\log_2 x⋅2## ...Kindly look at this in the context of the above problem ...
 
Last edited:
chwala said:
I meant ##\log_2 x•2## ...Kindly look at this in the context of the above problem ...
I've followed this thread all the way through, so I'm aware of the context. Your use of brackets in the expression ##\log_2 x[2]## threw me off. It would be much clearer with parentheses around the log argument; i.e., as ##\log_2 (x) \cdot 2##, which is better written as ##2\log_2(x)##.

The latter expression is equal to ##\log_2(x^2)##, which is different from ##\log_2(2x)##.
 
  • Like
Likes chwala
Just a minute Mark, is that really correct? I do not think we can re- write, ##log_2 x⋅2## as ##2log_2 x##... Looking at laws of Logarithms, ##2 log_2 x ##=## log_2 x^{2}##...which isn't what we are dealing with in our problem. Kindly clarify on this with our problem in mind.

Ok I think I see your point, with parentheses in mind...cheers
 
Last edited:
Yes, my point is that parentheses around the argument make it easier to distinguish ##\log_2(x \cdot 2)## from ##\log_2(x) \cdot 2##.
 
  • #10
Changing the base of the logarithm from ##~x~## to that of natural logarithm,
##{~~~~}{ \small { \rm {log} }_x~N } = \frac { { \rm {log} }_e~N } { { \rm {log} }_e~x } = \frac { { \rm {ln} }~N } { { \rm {ln} }~x }~\Rightarrow~{ \small { \rm {ln} }~x~{\rm {log} }_x~N } = { \small { \rm {ln} }~N }##
so one gets
##{~~~}\frac 1{ {\rm {log}}_x~2} + \frac 1{ {\rm {log}}_x~3} + \frac 1{ {\rm {log}}_x~6} = { \small 3.6 }~\Rightarrow~\frac { { \rm {ln} }~x } { {\rm {ln}}~2 } + \frac { { \rm {ln} }~x } { {\rm {ln}}~3 } + \frac { { \rm {ln} }~x } { {\rm {ln}}~6 } = { \small 3.6 }##
##{~~~}\Rightarrow~\frac 1{ {\rm {ln}}~2 } + \frac 1{ {\rm {ln}}~3 } + \frac 1{ {\rm {ln}}~6 } = \frac { 3.6 } { { \rm {ln} }~x } = { \small 2.911045 } ##
##{~~~~}{ \small { \rm {ln} }~x } = \frac {3.6} {2.911045} = { \small 1.236669 } ##
##{~~~}\Rightarrow~{ \small x } = e^{1.236669} = { \small 3.444 }##
 
  • Like
Likes chwala
Back
Top