Solve the given differential equation

In summary, substitution of x for 1+x in the equation x(1+x^2)^{-\frac{1}{5}}dx gives the same result as substitution of x for 1+x^2 in the equation x(1+x^2)^{-\frac{1}{2}}dx.
  • #1
chwala
Gold Member
2,650
351
Homework Statement
See attached
Relevant Equations
separation of variables
My interest is only on the highlighted part, i can clearly see that they made use of chain rule i.e
by letting ##u=1+x^2## we shall have ##du=2x dx## from there the integration bit and working to solution is straightforward. I always look at such questions as being 'convenient' questions.

Now to my question, supposing we had ##x(1+x^2)^{-\frac{1}{5}} dx## in the place of ##x(1+x^2)^{-\frac{1}{2}} dx##
How would we handle this?

1691325775186.png
 
Physics news on Phys.org
  • #2
chwala said:
Homework Statement: See attached
Relevant Equations: separation of variables

My interest is only on the highlighted part, i can clearly see that they made use of chain rule i.e
by letting ##u=1+x^2## we shall have ##du=2x dx## from there the integration bit and working to solution is straightforward. I always look at such questions as being 'convenient' questions.

Now to my question, supposing we had ##x(1+x^2)^{-\frac{1}{5}} dx## in the place of ##x(1+x^2)^{-\frac{1}{2}} dx##
How would we handle this?

View attachment 330199
You would handle it the same way that I would suppose the original integration was done: Sub ##u = 1 + x^2## and go from there.

-Dan
 
  • Like
Likes fresh_42
  • #3
chwala said:
Homework Statement: See attached
Relevant Equations: separation of variables

My interest is only on the highlighted part, i can clearly see that they made use of chain rule i.e
by letting ##u=1+x^2## we shall have ##du=2x dx## from there the integration bit and working to solution is straightforward. I always look at such questions as being 'convenient' questions.

Now to my question, supposing we had ##x(1+x^2)^{-\frac{1}{5}} dx## in the place of ##x(1+x^2)^{-\frac{1}{2}} dx##
How would we handle this?

View attachment 330199
Where did you get ##\dfrac{1}{5}## from?
 
  • #4
fresh_42 said:
Where did you get ##\dfrac{1}{5}## from?
I just came up with that part of the question. I will amend my question and re-post it again. (post 5)
 
  • #5
topsquark said:
You would handle it the same way that I would suppose the original integration was done: Sub ##u = 1 + x^2## and go from there.

-Dan
I will amend the question as it is still 'convenient' as in it is easy to solve.

Now to my question, supposing we had say ##x(1+x^{\frac{1}{2}})^{-\frac{1}{5}} dx## in the place of ##x(1+x^2)^{-\frac{1}{2}} dx##
How would we handle this?
 
  • #6
chwala said:
I just came up with that part of the question. I will amend my question and re-post it again. (post 5)
I do not see any ##5##. So where exactly do you see it?
 
  • #7
chwala said:
I will amend the question as it is still 'convenient' as in it is easy to solve.

Now to my question, supposing we had say ##x(1+x^{\frac{1}{2}})^{-\frac{1}{5}} dx## in the place of ##x(1+x^2)^{-\frac{1}{2}} dx##
How would we handle this?
I don't see that a simple substitution would work for this revised problem. For your 2nd example above, the expression in parentheses is ##1 + x^2##. Outside the parentheses you have something that is almost the differential of ##1 + x^2## (differing only by a constant multiplier). For a similar kind of substitution for your first example you would need the differential (or a constant multiple of it) outside the parentheses.
 
  • Like
Likes topsquark and chwala
  • #8
fresh_42 said:
Where did you get ##\dfrac{1}{5}## from?
He's asking about a different, but related, problem.
chwala said:
Now to my question, supposing we had ##x(1+x^2)^{−1/5}dx## in the place of ##x(1+x^2)^{−1/2}dx##
How would we handle this?
Which was answered by @topsquark.
topsquark said:
You would handle it the same way that I would suppose the original integration was done: Sub ##u=1+x^2## and go from there.
 
  • Like
Likes chwala, topsquark and fresh_42
  • #9
chwala said:
I will amend the question as it is still 'convenient' as in it is easy to solve.

Now to my question, supposing we had say ##x(1+x^{\frac{1}{2}})^{-\frac{1}{5}} dx## in the place of ##x(1+x^2)^{-\frac{1}{2}} dx##
How would we handle this?
The easiest way to see it is to do it in two steps:
1. Let ##u = x^{1/2}##.

2. Then let ##v = u + 1##.

But you can come up with all sorts of ugly examples, and many of them do not have an actual solution. If your question is about integration techniques of
##\displaystyle \int \dfrac{x \, dx }{(1 + x^a)^b}##

you really need to put it in it's own thread.

-Dan
 
  • Like
Likes chwala
  • #10
chwala said:
Homework Statement: See attached
Relevant Equations: separation of variables

My interest is only on the highlighted part, i can clearly see that they made use of chain rule i.e
by letting ##u=1+x^2## we shall have ##du=2x dx## from there the integration bit and working to solution is straightforward. I always look at such questions as being 'convenient' questions.

Now to my question, supposing we had ##x(1+x^2)^{-\frac{1}{5}} dx## in the place of ##x(1+x^2)^{-\frac{1}{2}} dx##
How would we handle this?

View attachment 330199
What happened with the y' in the separation process( from top line to 2nd line)?
 
  • #11
WWGD said:
What happened with the y' in the separation process( from top line to 2nd line)?
Check post ##8##. My interest is solely on the highlighted part of post ##1## in red.
 
  • Like
Likes WWGD

1. How do I solve a differential equation?

Solving a differential equation involves finding the function that satisfies the equation. This can be done by using various methods such as separation of variables, integrating factors, or using a specific formula for a particular type of equation.

2. What are the steps to solve a differential equation?

The general steps to solve a differential equation are: 1) Identify the type of equation, 2) Separate the variables, 3) Integrate both sides, 4) Solve for the constant of integration, 5) Check the solution by plugging it back into the original equation.

3. Can all differential equations be solved?

No, not all differential equations have a solution that can be expressed in terms of known functions. These are called non-elementary or unsolvable equations.

4. Do I need to have a background in math to solve a differential equation?

Yes, solving differential equations requires a solid understanding of calculus and algebra. It also helps to have knowledge of specific techniques and formulas used to solve different types of equations.

5. Are there any software or tools available to help solve differential equations?

Yes, there are many software programs and online tools that can help solve differential equations. However, it is important to have a basic understanding of the concepts and methods used in solving these equations to properly interpret and use the results.

Similar threads

  • Calculus and Beyond Homework Help
Replies
15
Views
789
  • Calculus and Beyond Homework Help
Replies
14
Views
395
  • Calculus and Beyond Homework Help
Replies
4
Views
945
  • Calculus and Beyond Homework Help
Replies
1
Views
735
  • Calculus and Beyond Homework Help
Replies
5
Views
620
  • Calculus and Beyond Homework Help
Replies
12
Views
1K
  • Calculus and Beyond Homework Help
Replies
3
Views
907
  • Calculus and Beyond Homework Help
Replies
7
Views
287
  • Calculus and Beyond Homework Help
Replies
10
Views
449
  • Calculus and Beyond Homework Help
Replies
8
Views
764
Back
Top