Solve Linear ODE Using Integrating Factor

Click For Summary
The discussion focuses on solving the initial value problem for a linear first-order ordinary differential equation (ODE) using the integrating factor method. The equation is transformed into a standard form, and the integrating factor is calculated as sin(x). After multiplying through by the integrating factor, the solution is derived, but an error is identified in the integration step, leading to confusion about the constant of integration. Participants clarify that it's crucial to include the constant when dividing by sin(x), and one contributor suggests that an integrating factor may not be necessary for this problem. The conversation emphasizes the importance of careful handling of constants and integration steps in solving ODEs.
1s1
Messages
20
Reaction score
0

Homework Statement



Solve the initial value problem:
$$sin(x)y' + ycos(x) = xsin(x), y(2)= \pi/2$$


Homework Equations





The Attempt at a Solution



Recognizing it as a Linear First-Order Equation:$$\frac{dy}{dx}+y\frac{cosx}{sinx}=x$$
$$P(x)=\frac{cosx}{sinx}$$
Integrating factor: $$e^{\int \frac{cosx}{sinx}dx}=sinx$$

Multiplying the ODE by the integrating factor:
$$\frac{d}{dx}[ysinx] = xsinx$$

Integrating both sides: $$ysinx = \int xsinx dx$$
$$y=1-\frac{xcosx}{sinx}+C$$
Solving for C: $$C=1$$
$$y=2-\frac{xcosx}{sinx}$$

Apparently this solution is incorrect, but I can't figure out why?
 
Physics news on Phys.org
From this line

ysinx=∫xsinxdx

you should get

ysinx = sinx - xcosx +C

then divide by sinx.
 
Thanks! When I divided through by ##sin(x)## from the step you suggested, I had forgotten to divide ##C## by ##sin(x)##. I tend to ignore the constants which is a big mistake. Thanks for the help!
 
maybe you have missed out some steps of what you did, it is not evident that you have worked out your integration factor or multiplied by it.

You don't need an integration factor and can go straight from line 1 to line 5.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K