Uku
- 79
- 0
Hi! Merry christmas!
u_{t}=u_{xx}-u_{x}
Can I solve it with separation of variables?
u=XT
XT^{'}=T(X^{''}-X^{'})
After rearranging
\frac{T^{'}}{T}=-\lambda^{2} 1)
\frac{X^{''}}{X} - frac{X^{'}}{X}=-\lambda^{2}
The solution to 1) is simple
T=Acos(\lambda t)+Bsin(\lambda t)
Now, for the X, I write out a characteristic equation and get that
X=Ce^{\frac{1}{2}+\sqrt{\frac{1}{4} - \lambda^{2}}x}+De^{\frac{1}{2}-\sqrt{\frac{1}{4} - \lambda^{2}}x}
Since u=XT, the solution would be:
XT=(Acos(\lambda t)+Bsin(\lambda t))(Ce^{\frac{1}{2}+\sqrt{\frac{1}{4} - \lambda^{2}}x}+De^{\frac{1}{2} - \sqrt{\frac{1}{4} - \lambda^{2}}x})
Now, have I done it wrong?
(I know that I have not checked, I will do it now)
Thanks,
Uku
Homework Statement
u_{t}=u_{xx}-u_{x}
Can I solve it with separation of variables?
The Attempt at a Solution
u=XT
XT^{'}=T(X^{''}-X^{'})
After rearranging
\frac{T^{'}}{T}=-\lambda^{2} 1)
\frac{X^{''}}{X} - frac{X^{'}}{X}=-\lambda^{2}
The solution to 1) is simple
T=Acos(\lambda t)+Bsin(\lambda t)
Now, for the X, I write out a characteristic equation and get that
X=Ce^{\frac{1}{2}+\sqrt{\frac{1}{4} - \lambda^{2}}x}+De^{\frac{1}{2}-\sqrt{\frac{1}{4} - \lambda^{2}}x}
Since u=XT, the solution would be:
XT=(Acos(\lambda t)+Bsin(\lambda t))(Ce^{\frac{1}{2}+\sqrt{\frac{1}{4} - \lambda^{2}}x}+De^{\frac{1}{2} - \sqrt{\frac{1}{4} - \lambda^{2}}x})
Now, have I done it wrong?
(I know that I have not checked, I will do it now)
Thanks,
Uku
Last edited: