MHB Solve Situational Problems Involving Trigonometric Identities

ukumure
Messages
5
Reaction score
0
Hi! I am so confused about the given and what is being asked, I don't know how to solve it. This topic is solving situational problems involving trigonometric identities. Your help would be a big one for me :) Thank you so much in advance!
1.png
 
Mathematics news on Phys.org
First, we need to establish $\sin\theta$ and $\cos\theta$.
$9^2+(-5)^2=106$ (Pythagorean theorem)
so $\sin\theta$ is $\sqrt{\frac{|-5|}{106}}, \text{that is}, \left(\frac{opp}{hyp}\right)$ and $\cos\theta$ is $\frac{3}{\sqrt{106}}, \text{that is}, \left(\frac{adj}{hyp}\right)$ (recall that $\sin\theta$ is the magnitude of the opposite side of the right-angled triangle containing $\theta$ divided by the hypotenuse)

Hence $\sin\theta+\cos\theta=\frac{3+\sqrt{|-5|}}{\sqrt{106}}$.
 
Greg said:
First, we need to establish $\sin\theta$ and $\cos\theta$.
$9^2+(-5)^2=106$ (Pythagorean theorem)
so $\sin\theta$ is $\sqrt{\frac{|-5|}{106}}, \text{that is}, \left(\frac{opp}{hyp}\right)$ and $\cos\theta$ is $\frac{3}{\sqrt{106}}, \text{that is}, \left(\frac{adj}{hyp}\right)$ (recall that $\sin\theta$ is the magnitude of the opposite side of the right-angled triangle containing $\theta$ divided by the hypotenuse)

Hence $\sin\theta+\cos\theta=\frac{3+\sqrt{|-5|}}{\sqrt{106}}$.
THANK YOU SO MUCH! :)))
 
$\cos{\theta} = \dfrac{x}{r} = \dfrac{9}{\sqrt{106}}$

$\sin{\theta} = \dfrac{y}{r} = \dfrac{-5}{\sqrt{106}}$

$\cos{\theta} + \sin{\theta} = \dfrac{4}{\sqrt{106}}$

ref_tri_IV.jpg
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top