Solve the given differential equation

Click For Summary

Homework Help Overview

The discussion revolves around solving a differential equation, specifically focusing on the manipulation of constants during integration and the implications of initial conditions on the solution.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the placement of constants in the integration process and question how this affects the final solution, particularly in relation to initial conditions.

Discussion Status

Some participants have provided insights into the importance of constant placement and its potential impact on the solution, while others have expressed that it may not be a concern in all cases. There is an ongoing exploration of different interpretations regarding the integration process and the handling of constants.

Contextual Notes

There is mention of an initial condition that may influence the value of constants, and participants are considering how different approaches to the problem can lead to the same or different results.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
See attached.
Relevant Equations
separation of variables
I am on differential equations today...refreshing.

Ok, this is a pretty easier area to me...just wanted to clarify that the constant may be manipulated i.e dependent on approach. Consider,

1691324528542.png


1691324637563.png


Ok I have,

##\dfrac{dy}{6y^2}= x dx##

on integration,

##-\dfrac{1}{6y} + k = \dfrac{x^2}{2}##

##k= \dfrac{x^2}{2} + \dfrac{1}{6y}##

using ##y(1)=0.04## we shall get,

##k=\dfrac{28}{6}##

##\dfrac{28}{6}-\dfrac{x^2}{2}=\dfrac{1}{6y}##

...

aaargh looks like i will get the same results...cheers
 
Physics news on Phys.org
Mark44 said:
So, you don't have a problem, right?
Correct, I do not have a problem.

Where one places the constant doesn't really matter in these kind of problems.
 
chwala said:
Where one places the constant doesn't really matter in these kind of problems.
It does matter in certain cases.
If I worked the problem like this ...
##\frac {dy}{y^2} = 6x~dx##
##\frac{-1}y = 3x^2## (Omitting the constant for now)
##y = \frac{-1}{3x^2} + C## (Adding the constant now)

The above gives the wrong value for C when you substitute in the initial condition.
I'm not saying that's what you meant. In the second line above, you could write it as ##\frac{-1}y = 3x^2 + C_1## or as ##\frac{-1}y + C_2= 3x^2##.
The constants will be different, but when you solve for y in either equation, the solutions will be the same.
chwala said:
##\dfrac{28}{6}-\dfrac{x^2}{2}=\dfrac{1}{6y}##
You should write the solution in the form y = f(x), as was shown in the solution.
 
  • Like
Likes   Reactions: chwala
Mark44 said:
It does matter in certain cases.
If I worked the problem like this ...
##\frac {dy}{y^2} = 6x~dx##
##\frac{-1}y = 3x^2## (Omitting the constant for now)
##y = \frac{-1}{3x^2} + C## (Adding the constant now)

The above gives the wrong value for C when you substitute in the initial condition.
I'm not saying that's what you meant. In the second line above, you could write it as ##\frac{-1}y = 3x^2 + C_1## or as ##\frac{-1}y + C_2= 3x^2##.
The constants will be different, but when you solve for y in either equation, the solutions will be the same.

You should write the solution in the form y = f(x), as was shown in the solution.
@Mark44 I realized that it would just give the same solution, thus left it hanging.
 

Similar threads

  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
1K