Solve the given first order differential equation

Click For Summary
SUMMARY

The forum discussion centers on solving a first-order differential equation using two methods: separation of variables and integrating factors. The initial condition provided is \( y\left(\frac{\pi}{4}\right) = -1 \). The user successfully derives the solution \( y = -e^{\tan x - 1} \) but struggles with applying the initial condition. Another participant confirms that the solution is correct and clarifies that using separation of variables is acceptable, emphasizing that method marks should be awarded regardless of the approach taken.

PREREQUISITES
  • Understanding of first-order differential equations
  • Familiarity with separation of variables technique
  • Knowledge of integrating factors in differential equations
  • Basic logarithmic and exponential functions
NEXT STEPS
  • Study the application of initial conditions in differential equations
  • Explore the method of integrating factors in greater depth
  • Learn about the implications of using different methods to solve differential equations
  • Investigate common pitfalls in solving first-order differential equations
USEFUL FOR

Students studying differential equations, educators teaching calculus, and anyone seeking to understand the nuances of solving first-order differential equations with initial conditions.

chwala
Gold Member
Messages
2,828
Reaction score
420
Homework Statement
This is a text question-
Relevant Equations
separation of variables
first order differential equation- integrating factor...
1672610474749.png


My thinking is two-fold, firstly, i noted that we can use separation of variables; i.e

##\dfrac{dy}{y}= \sec^2 x dx##

on integrating both sides we have;

##\ln y = \tan x + k##

##y=e^{\tan x+k} ##

now i got stuck here as we cannot apply the initial condition ##y(\dfrac {π}{4})=-1##

Secondly on using;

##\dfrac{dy}{dx}+ P(x)y=q(x)##

i have

##\dfrac{dy}{dx}-\sec^2 x=0##

i.f= ##e^{-\int sec^2x dx} =e^{-\tan x}##

therefore,

##(e^{-\tanx }⋅y)' =0## on integration, we shall have;

##(e^{-\tan x} ⋅y) =k## now using the initial condition, ##y(\dfrac {π}{4})=-1##

we have, ##k=-\dfrac{1}{e}##

thus,
##y=e^{\tan x} ⋅k=\left[ e^{\tan x} ⋅-\dfrac{1}{e}\right]=-e^{\tan x-1}##

i do not have solution to the problem...your insight is welcome...
 
Last edited:
Physics news on Phys.org
I don't see what your problem is. You found that $$y=-e^{\tan(x) -1}$$

Isn't this answer (B)?
 
  • Like
Likes   Reactions: chwala
chwala said:
on integrating both sides we have;
##\ln y = \tan x + k##

##y=e^{\tan x+k} ##

now i got stuck here as we cannot apply the initial condition ##y(\dfrac {π}{4})=-1##
Your second equation above is equivalent to ##y = e^{\tan(x)}\cdot e^k## or ##y = Ce^{\tan(x)}##, where ##C= e^k##. Simply substitute ##\pi/4## for x and -1 for y to solve for C.
 
  • Like
Likes   Reactions: WWGD and chwala
chwala said:
Homework Statement:: This is a text question-
Relevant Equations:: separation of variables
first order differential equation- integrating factor...

View attachment 319644

My thinking is two-fold, firstly i noted that we can use separation of variables; i.e

##\dfrac{dy}{y}= \sec^2 x dx##

on integrating both sides we have;

##\ln y = \tan x + k##

##y=e^{\tan x+k} ##

now i got stuck here as we cannot apply the initial condition ##y(\dfrac {π}{4})=-1##
Keep in mind:

##\displaystyle \int \dfrac{dy}{y} = \ln |y| + C ##
 
  • Like
Likes   Reactions: malawi_glenn and chwala
phyzguy said:
I don't see what your problem is. You found that $$y=-e^{\tan(x) -1}$$

Isn't this answer (B)?
Correct...

My question is 'would a student be wrong in attempting to use separation of variables?' ...does he/she get method marks? cheers...
 
Mark44 said:
Your second equation above is equivalent to ##y = e^{\tan(x)}\cdot e^k## or ##y = Ce^{\tan(x)}##, where ##C= e^k##. Simply substitute ##\pi/4## for x and -1 for y to solve for C.
Won't we have ##e^k=-1##?
 
chwala said:
Won't we have ##e^k=-1##?
No. Solve for C in this equation: ##-1 = Ce^1##
 
  • Like
Likes   Reactions: chwala
chwala said:
My question is 'would a student be wrong in attempting to use separation of variables?' ...does he/she get method marks?
I don't see why the work would be marked as wrong. The question asks only which of the four listed equation is the solution and makes no requirement of which method to use.
 
Thanks @Mark44 ...my interest was on checking if we could use separation of variables. You have clearly shown that to me. Cheers!
 
Last edited:
  • Like
Likes   Reactions: WWGD

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
979
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
1K
  • · Replies 24 ·
Replies
24
Views
2K