Solve the given problem that involves a space curve

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Curve Space
Click For Summary

Homework Help Overview

The discussion revolves around a problem involving a space curve, specifically focusing on concepts such as unit tangent, curvature, principal normal, binormal, and torsion. Participants are exploring the mathematical properties and relationships associated with these elements in the context of the given curve.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants are attempting to derive various properties of the space curve, including the unit tangent vector and curvature. Some express interest in visualizing the curve in 3D, while others reflect on the relationship between distance, velocity, and acceleration. Questions about the necessity of the thread and the need for assistance are also raised.

Discussion Status

The discussion includes attempts at deriving mathematical expressions and exploring the implications of these properties. Some participants have offered insights and affirmations, while others have questioned the need for help, suggesting a mix of confidence and uncertainty in the original poster's understanding.

Contextual Notes

There are mentions of using Mathematica for plotting the space curve, indicating a potential gap in tools or knowledge for visual representation. Additionally, some participants express a desire to move on to other problems, suggesting a shift in focus.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
For the space curve; ##\left[x=t-\dfrac{t^3}{3}, y=t^2,
z=t+\dfrac{t^3}{3} \right]##

Find;

1. Unit tangent
2. Curvature
3. Principal Normal
4. Binormal
5. Torsion
Relevant Equations
vector differentiation
Relatively new area to me; will solve one -at- time as i enjoy the weekend with coffee.

1. Unit tangent

##r=xi+yj+zk##

##r=(t-\dfrac{t^3}{3})i+t^2j+(t+\dfrac{t^3}{3})k##
##T=\dfrac{dr}{dt} ⋅\dfrac{dt}{ds}##
##\dfrac{dr}{dt}=(1-t^2)i+2tj+(1+t^2)k##
##\dfrac{ds}{dt}=\sqrt{(1-t^2)^2+4t^2+(1+t^2)^2}##

##=\sqrt{1-2t^2+t^4+4t^2+1+2t^2+t^4}##

##=\sqrt{2t^4+4t^2+2}##

## =\sqrt{2}(1+t^2)##

##T=\dfrac{(1-t^2)i+2tj+(1+t^2)k}{\sqrt{2} (1+t^2)}##

of course you may chip in with your insight/cheers. ..will look at rest later...
 
Last edited by a moderator:
Physics news on Phys.org
Looks fine to me...
 
  • Like
Likes   Reactions: chwala
A greater way to think of this, is the relationship between distance, velocity, and acceleration.
Have you seen the derivation?
 
2. Curvature;

##κ=|\dfrac{dT}{ds}|##

##\dfrac{dT}{ds}=\dfrac{dT}{dt} ⋅\dfrac{dt}{ds}=\dfrac{\sqrt{2}(-2ti+(1-t^2)j)}{(1+t^2)^2}⋅\dfrac{1}{\sqrt{2}(1+t^2)} ##

##\dfrac{dT}{ds}=\dfrac{-2ti+(1-t^2)j}{(1+t^2)^3}##=##\dfrac{-2t}{(1+t^2)^3} i +\dfrac{1-t^2}{(1+t^2)^3}j##

##|\dfrac{dT}{ds}|=\sqrt{\dfrac {4t^2}{(1+t^2)^6}+\dfrac {(1-t^2)^2}{(1+t^2)^6}}=\sqrt{\dfrac{t^4+2t^2+1}{(1+t^2)^6}}=\sqrt{\dfrac{(t^2+1)^2}{(1+t^2)^6}}=\dfrac{1+t^2}{(1+t^2)^3}=\dfrac{1}{(1+t^2)^2}##
 
Last edited:
As i attempt this i would be interested in how the given space curve looks like on 3D graph... I will also be looking at that...i need Mathematica to do this?
 
Last edited:
3. Principal Normal;

##N=\dfrac{1}{κ} ⋅\dfrac{dT}{ds}=(1+t^2)^2⋅\dfrac{-2ti+(1-t^2)j}{(1+t^2)^3}=\dfrac{-2ti+(1-t^2)j}{1+t^2}##
 
4. Binormal

##B= T ×N##

i​
j​
k​
##\dfrac{1-t^2}{\sqrt{2} (1+t^2)}##​
##\dfrac{2t}{\sqrt{2} (1+t^2)}##
##\dfrac{1}{\sqrt{2}}##
##\dfrac{-2t}{ 1+t^2}##
##\dfrac{1-t^2}{ 1+t^2}##
0​

##=\dfrac{t^2-1}{\sqrt{2} (1+t^2)}i -\dfrac{2t}{\sqrt{2} (1+t^2)}j+\dfrac{t^2+1}{\sqrt{2} (t^2+1)}=\dfrac{(t^2-1)i-2tj+(t^2+1)k}{\sqrt{2} (t^2+1)}##
 
Last edited:
5. Torsion ##τ##

##\dfrac{dB}{dt}=\dfrac{\sqrt{2} (t^2+1)[2ti-2j+2tk]-2t\sqrt{2}[(t^2-1)i-2tj+(t^2+1)k]}{2(1+t^2)^2}##

##\dfrac{dB}{ds}=\dfrac{dB}{dt}⋅\dfrac{dt}{ds}=\dfrac{\sqrt{2} (t^2+1)[2ti-2j+2tk]-2t\sqrt{2}[(t^2-1)i-2tj+(t^2+1)k]}{2(1+t^2)^2} ⋅\dfrac{1}{\sqrt{2}(1+t^2)}##

##\dfrac{dB}{ds}=\dfrac{dB}{dt}⋅\dfrac{dt}{ds}=\left[\dfrac{4t} {\sqrt{2}(t^2+1)^2}i+\dfrac{2t^2-2} {\sqrt{2}(t^2+1)^2}j\right]⋅\dfrac{1}{\sqrt{2}(1+t^2)}##

##=\left[\dfrac{2t} {(t^2+1)^3}i+\dfrac{t^2-1} {(t^2+1)^3}j\right]=-τN##

##=\left[\dfrac{2t} {(t^2+1)^3}i+\dfrac{t^3-1} {(t^2+1)^3}j\right]=-τ \left[\dfrac{-2ti+(1-t^2)j}{1+t^2}\right]##

##=\left[\dfrac{2t} {(t^2+1)^3}i+\dfrac{t^2-1} {(t^2+1)^3}j\right]=τ \left[\dfrac{2ti+(t^2-1)j}{1+t^2}\right]##

##\dfrac{τ}{1+t^2}=\dfrac{1}{(1+t^2)^3}##

##τ =\dfrac{1+t^2}{(1+t^2)^3}=\dfrac{1}{(1+t^2)^2}##

Bingo! :cool:
 
Last edited:
in general, these problems become trivial when one knows the definition. Ie., the derivation of acceleration, starting with distance.

I do not see the point of this thread, since it is apparent you do not need any help.
 
  • Like
Likes   Reactions: chwala
  • #10
Noted...I agree...i will move to other problems...meanwhile let me know how I can go about plotting the space curve in 3d.
 
  • #11
chwala said:
Noted...I agree...i will move to other problems...meanwhile let me know how I can go about plotting the space curve in 3d.
ummm you cannot demand anything from me...
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
8
Views
2K