Solve the given problem that involves a space curve

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Curve Space
chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
For the space curve; ##\left[x=t-\dfrac{t^3}{3}, y=t^2,
z=t+\dfrac{t^3}{3} \right]##

Find;

1. Unit tangent
2. Curvature
3. Principal Normal
4. Binormal
5. Torsion
Relevant Equations
vector differentiation
Relatively new area to me; will solve one -at- time as i enjoy the weekend with coffee.

1. Unit tangent

##r=xi+yj+zk##

##r=(t-\dfrac{t^3}{3})i+t^2j+(t+\dfrac{t^3}{3})k##
##T=\dfrac{dr}{dt} ⋅\dfrac{dt}{ds}##
##\dfrac{dr}{dt}=(1-t^2)i+2tj+(1+t^2)k##
##\dfrac{ds}{dt}=\sqrt{(1-t^2)^2+4t^2+(1+t^2)^2}##

##=\sqrt{1-2t^2+t^4+4t^2+1+2t^2+t^4}##

##=\sqrt{2t^4+4t^2+2}##

## =\sqrt{2}(1+t^2)##

##T=\dfrac{(1-t^2)i+2tj+(1+t^2)k}{\sqrt{2} (1+t^2)}##

of course you may chip in with your insight/cheers. ..will look at rest later...
 
Last edited by a moderator:
Physics news on Phys.org
A greater way to think of this, is the relationship between distance, velocity, and acceleration.
Have you seen the derivation?
 
2. Curvature;

##κ=|\dfrac{dT}{ds}|##

##\dfrac{dT}{ds}=\dfrac{dT}{dt} ⋅\dfrac{dt}{ds}=\dfrac{\sqrt{2}(-2ti+(1-t^2)j)}{(1+t^2)^2}⋅\dfrac{1}{\sqrt{2}(1+t^2)} ##

##\dfrac{dT}{ds}=\dfrac{-2ti+(1-t^2)j}{(1+t^2)^3}##=##\dfrac{-2t}{(1+t^2)^3} i +\dfrac{1-t^2}{(1+t^2)^3}j##

##|\dfrac{dT}{ds}|=\sqrt{\dfrac {4t^2}{(1+t^2)^6}+\dfrac {(1-t^2)^2}{(1+t^2)^6}}=\sqrt{\dfrac{t^4+2t^2+1}{(1+t^2)^6}}=\sqrt{\dfrac{(t^2+1)^2}{(1+t^2)^6}}=\dfrac{1+t^2}{(1+t^2)^3}=\dfrac{1}{(1+t^2)^2}##
 
Last edited:
As i attempt this i would be interested in how the given space curve looks like on 3D graph... I will also be looking at that...i need Mathematica to do this?
 
Last edited:
3. Principal Normal;

##N=\dfrac{1}{κ} ⋅\dfrac{dT}{ds}=(1+t^2)^2⋅\dfrac{-2ti+(1-t^2)j}{(1+t^2)^3}=\dfrac{-2ti+(1-t^2)j}{1+t^2}##
 
4. Binormal

##B= T ×N##

i​
j​
k​
##\dfrac{1-t^2}{\sqrt{2} (1+t^2)}##​
##\dfrac{2t}{\sqrt{2} (1+t^2)}##
##\dfrac{1}{\sqrt{2}}##
##\dfrac{-2t}{ 1+t^2}##
##\dfrac{1-t^2}{ 1+t^2}##
0​

##=\dfrac{t^2-1}{\sqrt{2} (1+t^2)}i -\dfrac{2t}{\sqrt{2} (1+t^2)}j+\dfrac{t^2+1}{\sqrt{2} (t^2+1)}=\dfrac{(t^2-1)i-2tj+(t^2+1)k}{\sqrt{2} (t^2+1)}##
 
Last edited:
5. Torsion ##τ##

##\dfrac{dB}{dt}=\dfrac{\sqrt{2} (t^2+1)[2ti-2j+2tk]-2t\sqrt{2}[(t^2-1)i-2tj+(t^2+1)k]}{2(1+t^2)^2}##

##\dfrac{dB}{ds}=\dfrac{dB}{dt}⋅\dfrac{dt}{ds}=\dfrac{\sqrt{2} (t^2+1)[2ti-2j+2tk]-2t\sqrt{2}[(t^2-1)i-2tj+(t^2+1)k]}{2(1+t^2)^2} ⋅\dfrac{1}{\sqrt{2}(1+t^2)}##

##\dfrac{dB}{ds}=\dfrac{dB}{dt}⋅\dfrac{dt}{ds}=\left[\dfrac{4t} {\sqrt{2}(t^2+1)^2}i+\dfrac{2t^2-2} {\sqrt{2}(t^2+1)^2}j\right]⋅\dfrac{1}{\sqrt{2}(1+t^2)}##

##=\left[\dfrac{2t} {(t^2+1)^3}i+\dfrac{t^2-1} {(t^2+1)^3}j\right]=-τN##

##=\left[\dfrac{2t} {(t^2+1)^3}i+\dfrac{t^3-1} {(t^2+1)^3}j\right]=-τ \left[\dfrac{-2ti+(1-t^2)j}{1+t^2}\right]##

##=\left[\dfrac{2t} {(t^2+1)^3}i+\dfrac{t^2-1} {(t^2+1)^3}j\right]=τ \left[\dfrac{2ti+(t^2-1)j}{1+t^2}\right]##

##\dfrac{τ}{1+t^2}=\dfrac{1}{(1+t^2)^3}##

##τ =\dfrac{1+t^2}{(1+t^2)^3}=\dfrac{1}{(1+t^2)^2}##

Bingo! :cool:
 
Last edited:
in general, these problems become trivial when one knows the definition. Ie., the derivation of acceleration, starting with distance.

I do not see the point of this thread, since it is apparent you do not need any help.
 
  • #10
Noted...I agree...i will move to other problems...meanwhile let me know how I can go about plotting the space curve in 3d.
 
  • #11
chwala said:
Noted...I agree...i will move to other problems...meanwhile let me know how I can go about plotting the space curve in 3d.
ummm you cannot demand anything from me...
 
Back
Top