Solve the iterative problem below

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Iterative
Click For Summary
The discussion focuses on solving an iterative problem related to the equation 2x^3 + 50 = x^3 + 100. The correct solution reveals that x = √[3]{50} ≈ 3.68403 is the convergent value, while the mention of 3√50 was identified as a typo. Participants note that dividing both sides of the equation by x is problematic since x = 0 is also a valid solution, albeit unsuitable for this context. There is a consensus that the mark scheme should clarify the two potential solutions and specify that x = 0 is not applicable. The conversation highlights the importance of accuracy in problem statements and solutions in numerical analysis.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached
Relevant Equations
numerical analysis
I need insight on ##Q.2 (ii)## part only,

1636205529013.png


find mark scheme here;
1636205589245.png


How do we determine suitable equation, ##x=x...##?

ok, just looking at the solution, we shall have;
##2x^3+50 = x^3+100##
##x^3=50##
→##x##=##\sqrt[3]50##≡##3.68403## which is the value of ##α## ( convergent value as indicated in previous step).

I think it was an error to indicate ##3\sqrt 50## ...am assuming it was a typo error which is a bit misleading...been cracking my head trying to figure out on this.:cool:
 
Last edited:
  • Like
Likes Keith_McClary
Physics news on Phys.org
chwala said:
Homework Statement:: see attached
Relevant Equations:: numerical analysis

I need insight on ##Q.2 (ii)## part only,

View attachment 291842

find mark scheme here;
View attachment 291843

How do we determine suitable equation, ##x=x...##?

ok, just looking at the solution, we shall have;
##2x^3+50 = x^3+100##
##x^3=50##
→##x##=##\sqrt[3]50##≡##3.68403## which is the value of ##α## ( convergent value as indicated in previous step).
From the recurrence relation, you can write this:
$$x = \frac{x^4 + 100x}{2x^3 + 50} \Rightarrow 2x^4 + 50 x = x^4 + 100x$$
IOW, all I did was replace ##x_n## and ##x_{n + 1}## by x.
The latter equation simplifies to ##x(x^3 - 50) = 0##, so x = 0 or ##x = \sqrt[3]{50}##
chwala said:
I think it was an error to indicate ##3\sqrt 50## ...am assuming it was a typo error which is a bit misleading...been cracking my head trying to figure out on this.:cool:
Yes, it was a typo in the problem statement. They wrote ##3\sqrt{50}## when they should have written ##\sqrt[3]{50}##; i.e., the cube root of 50, not ##3 * \sqrt{50}##.
 
Nice Mark, but you also realize that we could divide both sides of the equation by ##x##... to realize the required solution...
##x=0## in this case would not apply.
 
chwala said:
Nice Mark, but you also realize that we could divide both sides of the equation by ##x##... to realize the required solution...
##x=0## in this case would not apply.
It's almost never a good idea to divide both sides of an equation by the variable. x = 0 is a solution of the equation ##2x^4 + 50x = x^4 + 100x##, and is in fact a solution of the iterative formula ##x_{n+1} = \frac{x_n}2 \cdot \frac{x_n^3 + 100}{x_n^3 + 25}##
 
Mark44 said:
It's almost never a good idea to divide both sides of an equation by the variable. x = 0 is a solution of the equation ##2x^4 + 50x = x^4 + 100x##, and is in fact a solution of the iterative formula ##x_{n+1} = \frac{x_n}2 \cdot \frac{x_n^3 + 100}{x_n^3 + 25}##
Ok cheers Mark...agreed in that case, we may say that the mark scheme was not conclusive on the possibilities of ##x##. They ought to have given provision for two solutions, then indicate that solution ##x=0## is "unsuitable".
 
Last edited:

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
5
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K