Solve the problem that involves partial fractions

chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
Given that; $$y=\frac {1+3x^2}{(1+x)^2(1-x)}$$

i. express ##y## in partial fractions.
ii. expand ##y## as a series in ascending powers of ##x##, giving the first three terms.
Relevant Equations
partial fractions and binomial theorem
Let $$y=\frac {1+3x^2}{(1+x)^2(1-x)}= \frac {A}{1-x}+\frac {B}{1+x}+\frac {C}{(1+x)^2}$$
$$⇒1+3x^2=A(1+x)^2+B(1-x^2)+C(1-x)$$
$$⇒A-B=3$$
$$2A-C=0$$
$$A+B+C=1$$
On solving the simultaneous equations, we get ##A=1##, ##B=-2## and ##C=2##
therefore we shall have,
$$y=\frac {1}{1-x}+\frac {-2}{1+x}+\frac {2}{(1+x)^2}$$
$$y=2(1+x)^{-2} +(1-x)^{-1} -2(1+x)^{-1}$$
Now on using binomial theorem we shall get;
$$y=2(1-2x+3x^2+...)+(1+x+x^2+...)+ -2(1-x+x^2+...)$$
$$y=(6x^2-4x+2...)+(x^2+x+1+...)+(-2x^2+2x-2+...)$$
$$y=1-x+5x^2+...$$ Bingo, any other variation would be appreciated guys!:cool:
 
Last edited:
Physics news on Phys.org
chwala said:
Am still posting..., i like sharing my approach and further explore other available ways of solving from members...i hope this is allowed in the forum...if not then do advise me...
OK, looks better now.
 
Here's a shorter version that uses a different technique.
$$\frac {1+3x^2}{(1+x)^2(1-x)} = \frac {A}{1-x}+\frac {B}{1+x}+\frac {C}{(1+x)^2}$$
$$⇒1+3x^2=A(1+x)^2+B(1-x^2)+C(1-x)$$
If x = 1, then 4 = 4A, so A =1
If x = -1, then 4 = 1(0) + B(0) + C(2), so C = 2
If x = 0, then 1 = 1(1) + B(1) + 2(1), so B = -2
Summarizing, A = 1, B = -2, C = 2

The technique you (@chwala) used equates the coefficients of the polynomials on either side of the equation. The technique I used relies on the fact that the equation ##\frac {1+3x^2}{(1+x)^2(1-x)} = \frac {A}{1-x}+\frac {B}{1+x}+\frac {C}{(1+x)^2}## is identically true: it must be true for all values of x. What I did was to pick values of x that made some of the terms on the right side vanish.
 
  • Like
Likes DaveE and chwala
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top