Solve the problem that involves partial fractions

Click For Summary

Homework Help Overview

The discussion revolves around solving a problem involving partial fractions, specifically the expression $$y=\frac {1+3x^2}{(1+x)^2(1-x)}$$ and its decomposition into simpler fractions. Participants explore different approaches to arrive at the coefficients A, B, and C in the partial fraction decomposition.

Discussion Character

  • Exploratory, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • One participant presents a detailed approach to solving for the coefficients A, B, and C through simultaneous equations. Others express confusion and seek clarification on the problem and its requirements. Another participant shares a different technique involving substituting specific values for x to simplify the process of finding the coefficients.

Discussion Status

The discussion is ongoing, with various methods being shared. Some participants are questioning the clarity of the original post, while others are attempting to clarify their approaches. There is no explicit consensus on the best method yet, but multiple perspectives are being explored.

Contextual Notes

Some participants express uncertainty about the appropriateness of sharing their approaches and seek guidance on forum rules regarding such discussions.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
Given that; $$y=\frac {1+3x^2}{(1+x)^2(1-x)}$$

i. express ##y## in partial fractions.
ii. expand ##y## as a series in ascending powers of ##x##, giving the first three terms.
Relevant Equations
partial fractions and binomial theorem
Let $$y=\frac {1+3x^2}{(1+x)^2(1-x)}= \frac {A}{1-x}+\frac {B}{1+x}+\frac {C}{(1+x)^2}$$
$$⇒1+3x^2=A(1+x)^2+B(1-x^2)+C(1-x)$$
$$⇒A-B=3$$
$$2A-C=0$$
$$A+B+C=1$$
On solving the simultaneous equations, we get ##A=1##, ##B=-2## and ##C=2##
therefore we shall have,
$$y=\frac {1}{1-x}+\frac {-2}{1+x}+\frac {2}{(1+x)^2}$$
$$y=2(1+x)^{-2} +(1-x)^{-1} -2(1+x)^{-1}$$
Now on using binomial theorem we shall get;
$$y=2(1-2x+3x^2+...)+(1+x+x^2+...)+ -2(1-x+x^2+...)$$
$$y=(6x^2-4x+2...)+(x^2+x+1+...)+(-2x^2+2x-2+...)$$
$$y=1-x+5x^2+...$$ Bingo, any other variation would be appreciated guys!:cool:
 
Last edited:
Physics news on Phys.org
chwala said:
Am still posting..., i like sharing my approach and further explore other available ways of solving from members...i hope this is allowed in the forum...if not then do advise me...
OK, looks better now.
 
  • Like
Likes   Reactions: chwala
Here's a shorter version that uses a different technique.
$$\frac {1+3x^2}{(1+x)^2(1-x)} = \frac {A}{1-x}+\frac {B}{1+x}+\frac {C}{(1+x)^2}$$
$$⇒1+3x^2=A(1+x)^2+B(1-x^2)+C(1-x)$$
If x = 1, then 4 = 4A, so A =1
If x = -1, then 4 = 1(0) + B(0) + C(2), so C = 2
If x = 0, then 1 = 1(1) + B(1) + 2(1), so B = -2
Summarizing, A = 1, B = -2, C = 2

The technique you (@chwala) used equates the coefficients of the polynomials on either side of the equation. The technique I used relies on the fact that the equation ##\frac {1+3x^2}{(1+x)^2(1-x)} = \frac {A}{1-x}+\frac {B}{1+x}+\frac {C}{(1+x)^2}## is identically true: it must be true for all values of x. What I did was to pick values of x that made some of the terms on the right side vanish.
 
  • Like
Likes   Reactions: DaveE and chwala

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K