Is d'Alembert's Formula Correct for Neumann Boundary Conditions in PDEs?

Click For Summary
SUMMARY

The discussion centers on the application of d'Alembert's formula for solving the Neumann boundary value problem in partial differential equations (PDEs). The formula used is $$\tilde{u}(t,x)=\frac{1}{2}\Big[\tilde{g}(x+t)+\tilde{g}(x-t)\Big]+\frac{1}{2}\int^{x+t}_{x-t}\tilde{h}(y)dy$$, where the functions are extended to handle Neumann conditions. The participants identify issues with the boundary conditions and the integral term in the formula, leading to corrections in the solution. The final solution is presented as $$u(t,x)=x^2+t^2+xt$$ for the specified conditions.

PREREQUISITES
  • Understanding of partial differential equations (PDEs)
  • Familiarity with d'Alembert's formula for wave equations
  • Knowledge of Neumann boundary conditions
  • Ability to perform function extensions and integrals in mathematical analysis
NEXT STEPS
  • Study the derivation and applications of d'Alembert's formula in various boundary conditions
  • Explore Neumann boundary conditions in more complex PDEs
  • Learn about even and odd function extensions in mathematical analysis
  • Investigate numerical methods for solving PDEs with boundary conditions
USEFUL FOR

Mathematicians, physicists, and engineers working with wave equations, particularly those dealing with Neumann boundary conditions in partial differential equations.

docnet
Messages
796
Reaction score
486
Homework Statement
solve this PDE
Relevant Equations
$$\tilde{u}(t,x)=\frac{1}{2}\Big[\tilde{g}(x+t)+\tilde{g}(x-t)\Big]+\frac{1}{2}\int^{x+t}_{x-t}\tilde{h}(y)dy$$
Hi all, I was hoping someone could check whether I computed part (4) correctly, where i find the solution u(t,x) using dAlembert's formula:
$$\boxed{\tilde{u}(t,x)=\frac{1}{2}\Big[\tilde{g}(x+t)+\tilde{g}(x-t)\Big]+\frac{1}{2}\int^{x+t}_{x-t}\tilde{h}(y)dy}$$
Does the graph of the solution look correct or does it look off?

I posted all my work just in case someone feels like looking over them ;)

Screen Shot 2021-03-29 at 3.39.07 PM.png
Screen Shot 2021-03-29 at 3.39.12 PM.png

We consider for an unknown function ##u:[0,\infty)\times[0,\infty)\rightarrow \mathbb{R}## the Neumann initial value problem given by
$$
\begin{cases}
\partial_t^2u-\partial_x^2u=0 & \text{in}\quad (0,\infty)\times (0,\infty) \\
u=g & \text{on}\quad\{t=0\}\times(0,\infty)\\\partial_tu=h & \text{on}\quad \{t=0\}\times (0,\infty) \\
\partial_xu=0 & \text{on}\quad (0,\infty)\times\{x=0\}\end{cases}$$
(1) Use even extension in the spatial variable ##x## to extend the unknown function ##u## and the data ##g,h## to functions ##\tilde{u}:[0,\infty)\times \mathbb{R}\rightarrow \mathbb{R}## and ##\tilde{g},\tilde{h}:\mathbb{R}\rightarrow \mathbb{R}##. \\\\We define the even extended functions with the following piece-wise functions
$$\tilde{u}(t,x)=
\begin{cases}
u(t,x) & t\geq 0, x\geq0 \\
u(t,-x) & t\geq 0, x<0
\end{cases}$$$$\ \tilde{g}(x)=
\begin{cases}
g(x) & x\geq0 \\
g(-x) & x<0
\end{cases}$$
$$\tilde{h}(x)=
\begin{cases}
h(x) & x\geq0 \\
h(-x) & x<0
\end{cases}$$
(2) The initial value problem satisfied by the unknown function ##\tilde{u}## with data ##\tilde{g}## and ##\tilde{h}## is
$$\begin{cases}
\partial_t^2\tilde{u}-\partial_x^2\tilde{u}=0 & \text{in}\quad (0,\infty)\times \mathbb{R} \\
\tilde{u}(0,\cdot)=\tilde{g} & \text{on}\quad\{t=0\}\times\mathbb{R}\\\partial_t\tilde{u}(0,\cdot)=\tilde{h} & \text{on}\quad \{t=0\}\times\mathbb{R} \end{cases}$$
The first equation is true because for ##x<0##
$$\partial_t^2u(t,x)\Rightarrow \partial_t^2u(t,-x)$$
$$\partial_x^2u(t,x)\Rightarrow \partial_x^2u(t,-x)$$
(3) We solve this problem by
plugging in ##u_0=\tilde{g}## and ##u_1=\tilde{h}## into d'Alembert's formula
$$\boxed{\tilde{u}(t,x)=\frac{1}{2}\Big[\tilde{g}(x+t)+\tilde{g}(x-t)\Big]+\frac{1}{2}\int^{x+t}_{x-t}\tilde{h}(y)dy}$$
(4) To recover ##u## from ##\tilde{u}##, We consider the solution formula for the following two cases: ##0\leq t\leq x## and
##0\leq x\leq t##.

Let ##t\geq 0, x\geq 0##.
$$1. \quad x+t\geq 0 \Rightarrow \tilde{g}(x+t)=g(x+t)$$
$$2. \quad x-t \Rightarrow x-t\geq 0 \quad \text{or} \quad x-t<0$$
If $x-t\geq 0$ $$\tilde{g}(x-t)\Rightarrow(x-t)$$
$$\int^{x+t}_{x-t}\tilde{h}(y)dy\Rightarrow \int^{x+t}_{x-t}h(y)dy$$
If ##x-t<0##
$$\tilde{g}(x-t)=g(t-x)$$
$$\int^{x+t}_{x-t}\tilde{h}(y)dy\Rightarrow \int_{t-x}^{x+t}h(y)dy$$
Hence our solution is given by
$$u(t,x)=\frac{1}{2}\Big[g(x+t)+g(x-t)\Big]+\frac{1}{2}\int^{x+t}_{x-t}h(y)dy \quad \text{for} \quad 0\leq t \leq x $$ $$
u(t,x)=\frac{1}{2}\Big[g(x+t)+g(t-x)\Big]+\frac{1}{2}\int_{t-x}^{x+t}h(y)dy \quad \text{for} \quad 0\leq x \leq t$$
(5) We choose ##g(x)=x^2## and ##h(y)=y## then the solution is given by
$$u(t,x)=x^2+t^2+xt\quad \text{for} \quad 0\leq t \leq x \quad \text{and} \quad 0\leq x \leq t$$
Sketch of the solution for ##t=0,1,2,3##
Screen Shot 2021-03-29 at 3.38.44 PM.png
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
As you can see from your plot, your solution clearly does not satisfy the boundary condition ##u_x(t,0) = 0##. Your problem lies in your assumption about the expression of the integral term in d'Alembert's formula for ##t > x## as you are removing part of the integration instead of using that the integrand is an even function.
 
  • Like
Likes   Reactions: docnet
Orodruin said:
As you can see from your plot, your solution clearly does not satisfy the boundary condition ##u_x(t,0) = 0##. Your problem lies in your assumption about the expression of the integral term in d'Alembert's formula for ##t > x## as you are removing part of the integration instead of using that the integrand is an even function.

Yes! thank you for noticing as always. Here is the corrected version.

We consider for an unknown function ##u:[0,\infty)\times[0,\infty)\rightarrow \mathbb{R}## the Neumann initial value problem given by
$$
\begin{cases}
\partial_t^2u-\partial_x^2u=0 & \text{in}\quad (0,\infty)\times (0,\infty) \\
u=g & \text{on}\quad\{t=0\}\times(0,\infty)\\\partial_tu=h & \text{on}\quad \{t=0\}\times (0,\infty) \\
\partial_xu=0 & \text{on}\quad (0,\infty)\times\{x=0\}\end{cases}$$
(1) Use even extension in the spatial variable ##x## to extend the unknown function ##u## and the data ##g,h## to functions ##\tilde{u}:[0,\infty)\times \mathbb{R}\rightarrow \mathbb{R}## and ##\tilde{g},\tilde{h}:\mathbb{R}\rightarrow \mathbb{R}##. \\\\We define the even extended functions with the following piece-wise functions
$$\tilde{u}(t,x)=
\begin{cases}
u(t,x) & t\geq 0, x\geq0 \\
u(t,-x) & t\geq 0, x<0
\end{cases}$$$$\ \tilde{g}(x)=
\begin{cases}
g(x) & x\geq0 \\
g(-x) & x<0
\end{cases}$$
$$\tilde{h}(x)=
\begin{cases}
h(x) & x\geq0 \\
h(-x) & x<0
\end{cases}$$
(2) The initial value problem satisfied by the unknown function ##\tilde{u}## with data ##\tilde{g}## and ##\tilde{h}## is
$$\begin{cases}
\partial_t^2\tilde{u}-\partial_x^2\tilde{u}=0 & \text{in}\quad (0,\infty)\times \mathbb{R} \\
\tilde{u}(0,\cdot)=\tilde{g} & \text{on}\quad\{t=0\}\times\mathbb{R}\\\partial_t\tilde{u}(0,\cdot)=\tilde{h} & \text{on}\quad \{t=0\}\times\mathbb{R} \end{cases}$$
The first equation is true because for ##x<0##
$$\partial_t^2u(t,x)\Rightarrow \partial_t^2u(t,-x)$$
$$\partial_x^2u(t,x)\Rightarrow \partial_x^2u(t,-x)$$
(3) We solve this problem by
plugging in ##u_0=\tilde{g}## and ##u_1=\tilde{h}## into d'Alembert's formula
$$\boxed{\tilde{u}(t,x)=\frac{1}{2}\Big[\tilde{g}(x+t)+\tilde{g}(x-t)\Big]+\frac{1}{2}\int^{x+t}_{x-t}\tilde{h}(y)dy}$$
(4) To recover ##u## from ##\tilde{u}##, We consider the solution formula for the following two cases: ##0\leq t\leq x## and
##0\leq x\leq t##.
Let ##t\geq 0, x\geq 0##.
$$1. \quad x+t\geq 0 \Rightarrow \tilde{g}(x+t)=g(x+t)$$
$$2. \quad x-t \Rightarrow x-t\geq 0 \quad \text{or} \quad x-t<0$$
If $x-t\geq 0$ $$\tilde{g}(x-t)\Rightarrow(x-t)$$
$$\int^{x+t}_{x-t}\tilde{h}(y)dy\Rightarrow \int^{x+t}_{x-t}h(y)dy$$
If ##x-t<0##
$$\tilde{g}(x-t)=g(t-x)$$
$$\int^{x+t}_{x-t}\tilde{h}(y)dy\Rightarrow \int_{t-x}^{0}h(y)dy+\int_{x+t}^{0}h(y)dy$$
Hence our solution is given by
$$\boxed{u(t,x)\begin{cases}\frac{1}{2}\big[g(x+t)+g(x-t)\big]+\frac{1}{2}\int^{x+t}_{x-t}h(y)dy \quad \text{for} \quad 0\leq t \leq x \\
\frac{1}{2}\big[g(x+t)+g(t-x)\big]+\frac{1}{2}\int_0^{x+t}h(y)dy+\frac{1}{2}\int_0^{t-x}h(y)dy \quad \text{for} \quad 0\leq x \leq t\end{cases}}$$
(5) To make a sketch we choose an arbitrary polynomial data ##g(x)=x^2## and ##h(y)=y##. The corresponding solution is given by
$$\boxed{u(t,x)=\begin{cases}x^2+t^2+xt\quad \text{for} \quad 0\leq t \leq x \quad \\ \frac{3x^2+3t^2}{2} \quad\text{for}\quad 0\leq x \leq t\end{cases}}$$
Here is a sketch of the solution for ##0\leq t\leq x## at ##t=0,1,2,3## (the solution is valid for ##t\leq x##)

Screen Shot 2021-03-30 at 4.50.49 PM.png


And here is a sketch of the solution for ##0\leq x\leq t## at ##t=0,1,2,3##
2.5.1.png
 
Last edited:
Better, but your graphs are confusing because they are not valid for all the range you are plotting. I suggest you make a single plot for x>0 with the correct selection of the function for different values of x depending on the time t you are plotting for.
 
  • Like
Likes   Reactions: docnet
Orodruin said:
Better, but your graphs are confusing because they are not valid for all the range you are plotting. I suggest you make a single plot for x>0 with the correct selection of the function for different values of x depending on the time t you are plotting for.
Last attempt:

Here is a graph of ##u(t_i,x)## for ##t=0,1,2,3##

thank you. :bow:
Screen Shot 2021-03-30 at 9.59.28 PM.png
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
1K