MHB Solve trig equation cos(2x+20)=-cos(x-11)

  • Thread starter Thread starter laprec
  • Start date Start date
  • Tags Tags
    Trig
Click For Summary
The discussion focuses on solving the trigonometric equation cos(2x+20) = -cos(x-11) using both the sum-to-product identity and the unit circle approach. The sum-to-product identity leads to the equation 2cos((3x+9)/2)cos((x+31)/2) = 0, allowing for the determination of general solutions by setting each cosine factor to zero. The unit circle method highlights that for cos(θ) = -cos(φ), the angles must be either 180° - θ or 180° + θ, with periodic adjustments of 360°. Both methods yield similar solutions for x, demonstrating the versatility of approaches in solving trigonometric equations. The thread concludes with expressions of gratitude for the insights provided.
laprec
Messages
18
Reaction score
0
Kindly assist with this question:
Determine the general solutions cos(2x+20)=-cos(x-11)
 
Last edited:
Mathematics news on Phys.org
$\cos(2x+20)+\cos(x-11)=0$

using sum to product identity

$2\cos\left(\dfrac{3x+9}{2}\right)\cos\left(\dfrac{x+31}{2}\right) =0$

setting each cosine factor equal to zero yields

$\dfrac{3x+9}{2} = \dfrac{\pi}{2}(2k+1)$ where $k \in \mathbb{Z}$

$\dfrac{x+31}{2} = \dfrac{\pi}{2}(2k+1)$ where $k \in \mathbb{Z}$

if the arguments of the cosine functions are in degrees, then

$\dfrac{3x+9}{2} = 90(2k+1)$ where $k \in \mathbb{Z}$

$\dfrac{x+31}{2} = 90(2k+1)$ where $k \in \mathbb{Z}$

finish it
 
Last edited by a moderator:
As an alternative to skeeter's method, I'd like to bring up the unit circle.
\begin{tikzpicture}[scale=3,>=stealth]
\def\angle{35}
\draw[->, help lines] (-1.2,0) -- (1.2,0);
\draw[->, help lines] (0,-1.2) -- (0,1.2);
\draw[ultra thick, blue] circle (1);
\draw[thick] (0,0) -- (\angle:1) -- ({cos(\angle)}, 0) node[below] {$\cos\theta$} -- cycle ;
\draw[thick] (0,0) -- ({180+\angle}:1) -- ({-cos(\angle)}, 0) node[below] {$-\cos\theta$} -- cycle;
\draw[thick] (0,0) -- ({180-\angle}:1) -- ({-cos(\angle)}, 0);
\draw[->] ({\angle/2}:.4) node {$\theta$} (0:.3) arc (0:\angle:.3);
\draw[->] ({(180+\angle)/2}:-.14) node {$180^\circ+\theta$} (0:.1) arc (0:{180+\angle}:.1) ;
\draw[->] ({(180-\angle)/2}:.29) node {$180^\circ-\theta$} (0:.2) arc (0:{180-\angle}:.2) ;
\end{tikzpicture}
We have an equation of the form $\cos\theta = -\cos\phi$.
Given a $\theta$, for $\cos\theta$ to be equal to the opposite of another cosine, we can see that the other angle must either be $180^\circ-\theta$ or $180^\circ+\theta$. And we may have to add a multiple of $360^\circ$, which is the period of the circle.

So:
\begin{array}{lcl}
\cos(2x+20^\circ)=-\cos(x-11^\circ) \\
2x + 20^\circ = 180^\circ - (x-11^\circ) + 360^\circ k &\lor& 2x + 20^\circ = 180^\circ + (x-11^\circ) + 360^\circ k \\
3x = 171^\circ + 360^\circ k &\lor& x = 149^\circ + 360^\circ k \\
x = \frac 13\cdot171^\circ + 120^\circ k &\lor& x = 149^\circ + 360^\circ k \\
\end{array}
 
skeeter said:
$\cos(2x+20)+\cos(x-11)=0$

using sum to product identity

$2\cos\left(\dfrac{3x+9}{2}\right)\cos\left(\dfrac{x+31}{2}\right) =0$

setting each cosine factor equal to zero yields

$\dfrac{3x+9}{2} = \dfrac{\pi}{2}(2k+1)$ where $k \in \mathbb{Z}$

$\dfrac{x+31}{2} = \dfrac{\pi}{2}(2k+1)$ where $k \in \mathbb{Z}$

if the arguments of the cosine functions are in degrees, then

$\dfrac{3x+9}{2} = 90(2k+1)$ where $k \in \mathbb{Z}$

$\dfrac{x+31}{2} = 90(2k+1)$ where $k \in \mathbb{Z}$

finish it
Thanks a million skeeter. Much appreciated!
I have attached complete work out based on your guidiance.

- - - Updated - - -

Klaas van Aarsen said:
As an alternative to skeeter's method, I'd like to bring up the unit circle.
\begin{tikzpicture}[scale=3,>=stealth]
\def\angle{35}
\draw[->, help lines] (-1.2,0) -- (1.2,0);
\draw[->, help lines] (0,-1.2) -- (0,1.2);
\draw[ultra thick, blue] circle (1);
\draw[thick] (0,0) -- (\angle:1) -- ({cos(\angle)}, 0) node[below] {$\cos\theta$} -- cycle ;
\draw[thick] (0,0) -- ({180+\angle}:1) -- ({-cos(\angle)}, 0) node[below] {$-\cos\theta$} -- cycle;
\draw[thick] (0,0) -- ({180-\angle}:1) -- ({-cos(\angle)}, 0);
\draw[->] ({\angle/2}:.4) node {$\theta$} (0:.3) arc (0:\angle:.3);
\draw[->] ({(180+\angle)/2}:-.14) node {$180^\circ+\theta$} (0:.1) arc (0:{180+\angle}:.1) ;
\draw[->] ({(180-\angle)/2}:.29) node {$180^\circ-\theta$} (0:.2) arc (0:{180-\angle}:.2) ;
\end{tikzpicture}
We have an equation of the form $\cos\theta = -\cos\phi$.
Given a $\theta$, for $\cos\theta$ to be equal to the opposite of another cosine, we can see that the other angle must either be $180^\circ-\theta$ or $180^\circ+\theta$. And we may have to add a multiple of $360^\circ$, which is the period of the circle.

So:
\begin{array}{lcl}
\cos(2x+20^\circ)=-\cos(x-11^\circ) \\
2x + 20^\circ = 180^\circ - (x-11^\circ) + 360^\circ k &\lor& 2x + 20^\circ = 180^\circ + (x-11^\circ) + 360^\circ k \\
3x = 171^\circ + 360^\circ k &\lor& x = 149^\circ + 360^\circ k \\
x = \frac 13\cdot171^\circ + 120^\circ k &\lor& x = 149^\circ + 360^\circ k \\
\end{array}

Thanks a lot Klaas van Aarsen, the alternative method is equally helpful and insightful. Much appreciated.
 

Attachments

  • mhboardsoln.PNG
    mhboardsoln.PNG
    13.7 KB · Views: 151
small correction ...
 

Attachments

  • cos_equation.jpg
    cos_equation.jpg
    18.1 KB · Views: 130
skeeter said:
small correction ...

Thank you very much! Much appreciated!
 

Similar threads