Solve trig equation cos(2x+20)=-cos(x-11)

  • Context: MHB 
  • Thread starter Thread starter laprec
  • Start date Start date
  • Tags Tags
    Trig
Click For Summary
SUMMARY

The forum discussion focuses on solving the trigonometric equation cos(2x + 20) = -cos(x - 11). Utilizing the sum-to-product identity, the equation simplifies to 2cos((3x + 9)/2)cos((x + 31)/2) = 0. The solutions are derived by setting each cosine factor to zero, leading to general solutions expressed as x = (171°/3) + 120°k and x = 149° + 360°k, where k is an integer. Additionally, an alternative approach using the unit circle is discussed, reinforcing the relationship between angles and their cosine values.

PREREQUISITES
  • Understanding of trigonometric identities, specifically sum-to-product identities.
  • Familiarity with solving trigonometric equations.
  • Knowledge of the unit circle and angle relationships.
  • Basic algebraic manipulation skills for solving equations.
NEXT STEPS
  • Study the sum-to-product identities in trigonometry.
  • Learn how to apply the unit circle to solve trigonometric equations.
  • Explore advanced techniques for solving trigonometric equations, such as graphical methods.
  • Investigate periodic functions and their properties in trigonometric contexts.
USEFUL FOR

Students and educators in mathematics, particularly those focused on trigonometry, as well as anyone looking to deepen their understanding of solving trigonometric equations and applying identities effectively.

laprec
Messages
18
Reaction score
0
Kindly assist with this question:
Determine the general solutions cos(2x+20)=-cos(x-11)
 
Last edited:
Mathematics news on Phys.org
$\cos(2x+20)+\cos(x-11)=0$

using sum to product identity

$2\cos\left(\dfrac{3x+9}{2}\right)\cos\left(\dfrac{x+31}{2}\right) =0$

setting each cosine factor equal to zero yields

$\dfrac{3x+9}{2} = \dfrac{\pi}{2}(2k+1)$ where $k \in \mathbb{Z}$

$\dfrac{x+31}{2} = \dfrac{\pi}{2}(2k+1)$ where $k \in \mathbb{Z}$

if the arguments of the cosine functions are in degrees, then

$\dfrac{3x+9}{2} = 90(2k+1)$ where $k \in \mathbb{Z}$

$\dfrac{x+31}{2} = 90(2k+1)$ where $k \in \mathbb{Z}$

finish it
 
Last edited by a moderator:
As an alternative to skeeter's method, I'd like to bring up the unit circle.
\begin{tikzpicture}[scale=3,>=stealth]
\def\angle{35}
\draw[->, help lines] (-1.2,0) -- (1.2,0);
\draw[->, help lines] (0,-1.2) -- (0,1.2);
\draw[ultra thick, blue] circle (1);
\draw[thick] (0,0) -- (\angle:1) -- ({cos(\angle)}, 0) node[below] {$\cos\theta$} -- cycle ;
\draw[thick] (0,0) -- ({180+\angle}:1) -- ({-cos(\angle)}, 0) node[below] {$-\cos\theta$} -- cycle;
\draw[thick] (0,0) -- ({180-\angle}:1) -- ({-cos(\angle)}, 0);
\draw[->] ({\angle/2}:.4) node {$\theta$} (0:.3) arc (0:\angle:.3);
\draw[->] ({(180+\angle)/2}:-.14) node {$180^\circ+\theta$} (0:.1) arc (0:{180+\angle}:.1) ;
\draw[->] ({(180-\angle)/2}:.29) node {$180^\circ-\theta$} (0:.2) arc (0:{180-\angle}:.2) ;
\end{tikzpicture}
We have an equation of the form $\cos\theta = -\cos\phi$.
Given a $\theta$, for $\cos\theta$ to be equal to the opposite of another cosine, we can see that the other angle must either be $180^\circ-\theta$ or $180^\circ+\theta$. And we may have to add a multiple of $360^\circ$, which is the period of the circle.

So:
\begin{array}{lcl}
\cos(2x+20^\circ)=-\cos(x-11^\circ) \\
2x + 20^\circ = 180^\circ - (x-11^\circ) + 360^\circ k &\lor& 2x + 20^\circ = 180^\circ + (x-11^\circ) + 360^\circ k \\
3x = 171^\circ + 360^\circ k &\lor& x = 149^\circ + 360^\circ k \\
x = \frac 13\cdot171^\circ + 120^\circ k &\lor& x = 149^\circ + 360^\circ k \\
\end{array}
 
skeeter said:
$\cos(2x+20)+\cos(x-11)=0$

using sum to product identity

$2\cos\left(\dfrac{3x+9}{2}\right)\cos\left(\dfrac{x+31}{2}\right) =0$

setting each cosine factor equal to zero yields

$\dfrac{3x+9}{2} = \dfrac{\pi}{2}(2k+1)$ where $k \in \mathbb{Z}$

$\dfrac{x+31}{2} = \dfrac{\pi}{2}(2k+1)$ where $k \in \mathbb{Z}$

if the arguments of the cosine functions are in degrees, then

$\dfrac{3x+9}{2} = 90(2k+1)$ where $k \in \mathbb{Z}$

$\dfrac{x+31}{2} = 90(2k+1)$ where $k \in \mathbb{Z}$

finish it
Thanks a million skeeter. Much appreciated!
I have attached complete work out based on your guidiance.

- - - Updated - - -

Klaas van Aarsen said:
As an alternative to skeeter's method, I'd like to bring up the unit circle.
\begin{tikzpicture}[scale=3,>=stealth]
\def\angle{35}
\draw[->, help lines] (-1.2,0) -- (1.2,0);
\draw[->, help lines] (0,-1.2) -- (0,1.2);
\draw[ultra thick, blue] circle (1);
\draw[thick] (0,0) -- (\angle:1) -- ({cos(\angle)}, 0) node[below] {$\cos\theta$} -- cycle ;
\draw[thick] (0,0) -- ({180+\angle}:1) -- ({-cos(\angle)}, 0) node[below] {$-\cos\theta$} -- cycle;
\draw[thick] (0,0) -- ({180-\angle}:1) -- ({-cos(\angle)}, 0);
\draw[->] ({\angle/2}:.4) node {$\theta$} (0:.3) arc (0:\angle:.3);
\draw[->] ({(180+\angle)/2}:-.14) node {$180^\circ+\theta$} (0:.1) arc (0:{180+\angle}:.1) ;
\draw[->] ({(180-\angle)/2}:.29) node {$180^\circ-\theta$} (0:.2) arc (0:{180-\angle}:.2) ;
\end{tikzpicture}
We have an equation of the form $\cos\theta = -\cos\phi$.
Given a $\theta$, for $\cos\theta$ to be equal to the opposite of another cosine, we can see that the other angle must either be $180^\circ-\theta$ or $180^\circ+\theta$. And we may have to add a multiple of $360^\circ$, which is the period of the circle.

So:
\begin{array}{lcl}
\cos(2x+20^\circ)=-\cos(x-11^\circ) \\
2x + 20^\circ = 180^\circ - (x-11^\circ) + 360^\circ k &\lor& 2x + 20^\circ = 180^\circ + (x-11^\circ) + 360^\circ k \\
3x = 171^\circ + 360^\circ k &\lor& x = 149^\circ + 360^\circ k \\
x = \frac 13\cdot171^\circ + 120^\circ k &\lor& x = 149^\circ + 360^\circ k \\
\end{array}

Thanks a lot Klaas van Aarsen, the alternative method is equally helpful and insightful. Much appreciated.
 

Attachments

  • mhboardsoln.PNG
    mhboardsoln.PNG
    13.7 KB · Views: 160
small correction ...
 

Attachments

  • cos_equation.jpg
    cos_equation.jpg
    18.1 KB · Views: 141
skeeter said:
small correction ...

Thank you very much! Much appreciated!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K