laprec
- 18
- 0
Kindly assist with this question:
Determine the general solutions cos(2x+20)=-cos(x-11)
Determine the general solutions cos(2x+20)=-cos(x-11)
Last edited:
The discussion revolves around solving the trigonometric equation cos(2x+20) = -cos(x-11). Participants explore various methods to find general solutions, including algebraic manipulation and geometric interpretations using the unit circle.
Participants present multiple competing methods for solving the equation, and while some express appreciation for the different approaches, there is no consensus on a single solution method. The discussion remains unresolved with various perspectives offered.
Some participants note the importance of specifying whether angles are in degrees or radians, which may affect the interpretation of the solutions. There are also indications of missing assumptions regarding the periodic nature of the solutions.
Thanks a million skeeter. Much appreciated!skeeter said:$\cos(2x+20)+\cos(x-11)=0$
using sum to product identity
$2\cos\left(\dfrac{3x+9}{2}\right)\cos\left(\dfrac{x+31}{2}\right) =0$
setting each cosine factor equal to zero yields
$\dfrac{3x+9}{2} = \dfrac{\pi}{2}(2k+1)$ where $k \in \mathbb{Z}$
$\dfrac{x+31}{2} = \dfrac{\pi}{2}(2k+1)$ where $k \in \mathbb{Z}$
if the arguments of the cosine functions are in degrees, then
$\dfrac{3x+9}{2} = 90(2k+1)$ where $k \in \mathbb{Z}$
$\dfrac{x+31}{2} = 90(2k+1)$ where $k \in \mathbb{Z}$
finish it
Klaas van Aarsen said:As an alternative to skeeter's method, I'd like to bring up the unit circle.
\begin{tikzpicture}[scale=3,>=stealth]
\def\angle{35}
\draw[->, help lines] (-1.2,0) -- (1.2,0);
\draw[->, help lines] (0,-1.2) -- (0,1.2);
\draw[ultra thick, blue] circle (1);
\draw[thick] (0,0) -- (\angle:1) -- ({cos(\angle)}, 0) node[below] {$\cos\theta$} -- cycle ;
\draw[thick] (0,0) -- ({180+\angle}:1) -- ({-cos(\angle)}, 0) node[below] {$-\cos\theta$} -- cycle;
\draw[thick] (0,0) -- ({180-\angle}:1) -- ({-cos(\angle)}, 0);
\draw[->] ({\angle/2}:.4) node {$\theta$} (0:.3) arc (0:\angle:.3);
\draw[->] ({(180+\angle)/2}:-.14) node {$180^\circ+\theta$} (0:.1) arc (0:{180+\angle}:.1) ;
\draw[->] ({(180-\angle)/2}:.29) node {$180^\circ-\theta$} (0:.2) arc (0:{180-\angle}:.2) ;
\end{tikzpicture}
We have an equation of the form $\cos\theta = -\cos\phi$.
Given a $\theta$, for $\cos\theta$ to be equal to the opposite of another cosine, we can see that the other angle must either be $180^\circ-\theta$ or $180^\circ+\theta$. And we may have to add a multiple of $360^\circ$, which is the period of the circle.
So:
\begin{array}{lcl}
\cos(2x+20^\circ)=-\cos(x-11^\circ) \\
2x + 20^\circ = 180^\circ - (x-11^\circ) + 360^\circ k &\lor& 2x + 20^\circ = 180^\circ + (x-11^\circ) + 360^\circ k \\
3x = 171^\circ + 360^\circ k &\lor& x = 149^\circ + 360^\circ k \\
x = \frac 13\cdot171^\circ + 120^\circ k &\lor& x = 149^\circ + 360^\circ k \\
\end{array}
skeeter said:small correction ...