MHB Solve trig equation cos(2x+20)=-cos(x-11)

  • Thread starter Thread starter laprec
  • Start date Start date
  • Tags Tags
    Trig
AI Thread Summary
The discussion focuses on solving the trigonometric equation cos(2x+20) = -cos(x-11) using both the sum-to-product identity and the unit circle approach. The sum-to-product identity leads to the equation 2cos((3x+9)/2)cos((x+31)/2) = 0, allowing for the determination of general solutions by setting each cosine factor to zero. The unit circle method highlights that for cos(θ) = -cos(φ), the angles must be either 180° - θ or 180° + θ, with periodic adjustments of 360°. Both methods yield similar solutions for x, demonstrating the versatility of approaches in solving trigonometric equations. The thread concludes with expressions of gratitude for the insights provided.
laprec
Messages
18
Reaction score
0
Kindly assist with this question:
Determine the general solutions cos(2x+20)=-cos(x-11)
 
Last edited:
Mathematics news on Phys.org
$\cos(2x+20)+\cos(x-11)=0$

using sum to product identity

$2\cos\left(\dfrac{3x+9}{2}\right)\cos\left(\dfrac{x+31}{2}\right) =0$

setting each cosine factor equal to zero yields

$\dfrac{3x+9}{2} = \dfrac{\pi}{2}(2k+1)$ where $k \in \mathbb{Z}$

$\dfrac{x+31}{2} = \dfrac{\pi}{2}(2k+1)$ where $k \in \mathbb{Z}$

if the arguments of the cosine functions are in degrees, then

$\dfrac{3x+9}{2} = 90(2k+1)$ where $k \in \mathbb{Z}$

$\dfrac{x+31}{2} = 90(2k+1)$ where $k \in \mathbb{Z}$

finish it
 
Last edited by a moderator:
As an alternative to skeeter's method, I'd like to bring up the unit circle.
\begin{tikzpicture}[scale=3,>=stealth]
\def\angle{35}
\draw[->, help lines] (-1.2,0) -- (1.2,0);
\draw[->, help lines] (0,-1.2) -- (0,1.2);
\draw[ultra thick, blue] circle (1);
\draw[thick] (0,0) -- (\angle:1) -- ({cos(\angle)}, 0) node[below] {$\cos\theta$} -- cycle ;
\draw[thick] (0,0) -- ({180+\angle}:1) -- ({-cos(\angle)}, 0) node[below] {$-\cos\theta$} -- cycle;
\draw[thick] (0,0) -- ({180-\angle}:1) -- ({-cos(\angle)}, 0);
\draw[->] ({\angle/2}:.4) node {$\theta$} (0:.3) arc (0:\angle:.3);
\draw[->] ({(180+\angle)/2}:-.14) node {$180^\circ+\theta$} (0:.1) arc (0:{180+\angle}:.1) ;
\draw[->] ({(180-\angle)/2}:.29) node {$180^\circ-\theta$} (0:.2) arc (0:{180-\angle}:.2) ;
\end{tikzpicture}
We have an equation of the form $\cos\theta = -\cos\phi$.
Given a $\theta$, for $\cos\theta$ to be equal to the opposite of another cosine, we can see that the other angle must either be $180^\circ-\theta$ or $180^\circ+\theta$. And we may have to add a multiple of $360^\circ$, which is the period of the circle.

So:
\begin{array}{lcl}
\cos(2x+20^\circ)=-\cos(x-11^\circ) \\
2x + 20^\circ = 180^\circ - (x-11^\circ) + 360^\circ k &\lor& 2x + 20^\circ = 180^\circ + (x-11^\circ) + 360^\circ k \\
3x = 171^\circ + 360^\circ k &\lor& x = 149^\circ + 360^\circ k \\
x = \frac 13\cdot171^\circ + 120^\circ k &\lor& x = 149^\circ + 360^\circ k \\
\end{array}
 
skeeter said:
$\cos(2x+20)+\cos(x-11)=0$

using sum to product identity

$2\cos\left(\dfrac{3x+9}{2}\right)\cos\left(\dfrac{x+31}{2}\right) =0$

setting each cosine factor equal to zero yields

$\dfrac{3x+9}{2} = \dfrac{\pi}{2}(2k+1)$ where $k \in \mathbb{Z}$

$\dfrac{x+31}{2} = \dfrac{\pi}{2}(2k+1)$ where $k \in \mathbb{Z}$

if the arguments of the cosine functions are in degrees, then

$\dfrac{3x+9}{2} = 90(2k+1)$ where $k \in \mathbb{Z}$

$\dfrac{x+31}{2} = 90(2k+1)$ where $k \in \mathbb{Z}$

finish it
Thanks a million skeeter. Much appreciated!
I have attached complete work out based on your guidiance.

- - - Updated - - -

Klaas van Aarsen said:
As an alternative to skeeter's method, I'd like to bring up the unit circle.
\begin{tikzpicture}[scale=3,>=stealth]
\def\angle{35}
\draw[->, help lines] (-1.2,0) -- (1.2,0);
\draw[->, help lines] (0,-1.2) -- (0,1.2);
\draw[ultra thick, blue] circle (1);
\draw[thick] (0,0) -- (\angle:1) -- ({cos(\angle)}, 0) node[below] {$\cos\theta$} -- cycle ;
\draw[thick] (0,0) -- ({180+\angle}:1) -- ({-cos(\angle)}, 0) node[below] {$-\cos\theta$} -- cycle;
\draw[thick] (0,0) -- ({180-\angle}:1) -- ({-cos(\angle)}, 0);
\draw[->] ({\angle/2}:.4) node {$\theta$} (0:.3) arc (0:\angle:.3);
\draw[->] ({(180+\angle)/2}:-.14) node {$180^\circ+\theta$} (0:.1) arc (0:{180+\angle}:.1) ;
\draw[->] ({(180-\angle)/2}:.29) node {$180^\circ-\theta$} (0:.2) arc (0:{180-\angle}:.2) ;
\end{tikzpicture}
We have an equation of the form $\cos\theta = -\cos\phi$.
Given a $\theta$, for $\cos\theta$ to be equal to the opposite of another cosine, we can see that the other angle must either be $180^\circ-\theta$ or $180^\circ+\theta$. And we may have to add a multiple of $360^\circ$, which is the period of the circle.

So:
\begin{array}{lcl}
\cos(2x+20^\circ)=-\cos(x-11^\circ) \\
2x + 20^\circ = 180^\circ - (x-11^\circ) + 360^\circ k &\lor& 2x + 20^\circ = 180^\circ + (x-11^\circ) + 360^\circ k \\
3x = 171^\circ + 360^\circ k &\lor& x = 149^\circ + 360^\circ k \\
x = \frac 13\cdot171^\circ + 120^\circ k &\lor& x = 149^\circ + 360^\circ k \\
\end{array}

Thanks a lot Klaas van Aarsen, the alternative method is equally helpful and insightful. Much appreciated.
 

Attachments

  • mhboardsoln.PNG
    mhboardsoln.PNG
    13.7 KB · Views: 150
small correction ...
 

Attachments

  • cos_equation.jpg
    cos_equation.jpg
    18.1 KB · Views: 128
skeeter said:
small correction ...

Thank you very much! Much appreciated!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top