karush
Gold Member
MHB
- 3,240
- 5
this is supposed to be solved with U substitution
$\displaystyle
\int \sin^6(x)\cos^3(x)
$
since $$\cos^3(x)$$ has an odd power then
$\displaystyle
\int \sin^6(x)\left(1-\sin^2(x)\right)\cos(x) dx
$
then substitute $$u=\sin(x)$$ and $$du=cos(x)dx$$
$
\int u^6 \left(1-u^2\right) du
$
so if ok so far
$\displaystyle
\int \sin^6(x)\cos^3(x)
$
since $$\cos^3(x)$$ has an odd power then
$\displaystyle
\int \sin^6(x)\left(1-\sin^2(x)\right)\cos(x) dx
$
then substitute $$u=\sin(x)$$ and $$du=cos(x)dx$$
$
\int u^6 \left(1-u^2\right) du
$
so if ok so far