MHB Solve Trigonometric Sum: Find S Value

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Sum Trigonometric
Click For Summary
The discussion centers around finding the rational value of the sum S, defined as S = ∑(sin^6(k°)) for k from 1 to 89. Participants, including Callme, Anemone, and kaliprasad, share their approaches to solving this problem. Anemone's solution is acknowledged as being reached before Callme's, indicating a collaborative effort. The conversation highlights the mathematical reasoning behind the sum's rationality. Ultimately, the focus remains on determining the exact value of S.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
It can be shown that the following sum:

$$S=\sum_{k=1}^{89}\left(\sin^6\left(k^{\circ}\right)\right)$$

is rational. Find the value of $S$. (Callme)
 
Mathematics news on Phys.org
My solution:

My plan is first to reduce the power of both $\sin^6 x$ and $\cos^6 x$ in their sum, this gives

$\begin{align*}\sin^6 x+\cos^6 x&=\sin^4 x(1-\cos^2 x)+\cos^4 x(1-\sin^2 x)\\&=\sin^4 x+\cos^4 x-(\sin x \cos x)^2(\sin^2 x+\cos^2 x)\\&=\dfrac{(3-4\cos 2x+\cos 4x)+(3+4\cos 2x+\cos 4x)}{8}-\dfrac{\sin^2 2x}{4}\\&=\dfrac{3+\cos 4x}{4}-\dfrac{1-\cos 4x}{8}\\&=\dfrac{5}{8}+\dfrac{3\cos 4x}{8}\end{align*}$

Group the given sum as follows we see that

$\sin^6 1^{\circ}+\sin^6 2^{\circ}+\cdots + \sin^6 88^{\circ}+\sin^6 89^{\circ}$

$=(\sin^6 1^{\circ}+\sin^6 89^{\circ})+(\sin^6 2^{\circ}+\sin^6 88^{\circ})+\cdots+(\sin^6 44^{\circ}+\sin^6 46^{\circ})+(\sin^6 45^{\circ})$

$=(\sin^6 1^{\circ}+\cos^6 1^{\circ})+(\sin^6 2^{\circ}+\cos^6 2^{\circ})+\cdots+(\sin^6 44^{\circ}+\cos^6 44^{\circ})+\left(\dfrac{1}{\sqrt{2}}\right)^6$

$=\left(\dfrac{5}{8}+\dfrac{3\cos 4^{\circ}}{8}\right)+\left(\dfrac{5}{8}+\dfrac{3\cos 8^{\circ}}{8}\right)+\cdots+\left(\dfrac{5}{8}+\dfrac{3\cos 176^{\circ}}{8}\right)+\dfrac{1}{8}$

$=44\left(\dfrac{5}{8}\right)+\dfrac{3}{8}((\cos 4^{\circ}+\cos 176^{\circ}+)+(\cos 8^{\circ}+\cos 172^{\circ})+\cdots+(\cos 88^{\circ}+\cos 92^{\circ}))+\dfrac{1}{8}$

$=44\left(\dfrac{5}{8}\right)+\dfrac{3}{8}(0)+\dfrac{1}{8}$

$=\dfrac{221}{8}$

$\therefore S=\dfrac{221}{8}$
 
MarkFL said:
It can be shown that the following sum:

$$S=\sum_{k=1}^{89}\left(\sin^6\left(k^{\circ}\right)\right)$$

is rational. Find the value of $S$. (Callme)

we have



$\sin^6 x + \cos^6 x$

= $(\sin ^2x + \cos^2x)^3 - 3 \sin ^2 x \cos^2 x(\sin ^2 x + \cos^2 x)$

= $1- 3 \sin ^2 x \cos^2 x$

= $ 1- \dfrac{3}{4}(2 \sin x\, \cos\, x)^2 $

= $1- \dfrac{3}{4}(sin ^2 2x)$

= $1- \dfrac{3}{8}(2 sin ^2 2x)$

= $1- \dfrac{3}{8}(1- cos 4x)$

= $ \dfrac{5}{8}+\dfrac{3}{8}\cos 4x$



as $\sin \,x^{\circ} = \cos \, (90-x)^{\circ}$

now

$S=\sum_{k=1}^{89}\left(\sin^6\left(k^{\circ}\right)\right)$

= $\sin^6 45^{\circ} + \sum_{k=1}^{44}\left(\sin^6\left(k^{\circ}\right)+\cos^6\left(k^{\circ}\right)\right )$

= $\dfrac{1}{8} + \sum_{k=1}^{44}(\dfrac{5}{8}+\dfrac{3}{8}\cos\,4k^{\circ})$

= $\dfrac{221}{8} + \dfrac{3}{8} \sum_{k=1}^{44}(\cos\,4k^{\circ})$

now as $cos 4^{\circ} + cos 4 * 44^{\circ} = 0$ so on so sum of the cosines is zeo so result = $\dfrac{221}{8}$hence $S = \dfrac{221}{8}$

Note: As I was solving Anemone beat me to it.
 
Thank you anemone and kaliprasad for participating! (Sun)

My solution is essentially the same:

I first used the co-function identity:

$$\sin\left(90^{\circ}-x\right)=\cos(x)$$

to express the sum as:

$$S=\sum_{k=1}^{44} \sin^6\left(k^{\circ}\right)+\sin^6\left(45^{\circ}\right)+\sum_{k=1}^{44} \cos^6\left(k^{\circ}\right)$$

Hence:

$$S=\sum_{k=1}^{44}\left(\sin^6\left(k^{\circ}\right)+\cos^6\left(k^{\circ}\right)\right)+\frac{1}{8}$$

Now consider the following (sum of 2 cubes and a Pythagorean identity):

$$\sin^6(x)+\cos^6(x)=\sin^4(x)-\sin^2(x)\cos^2(x)+\cos^4(x)$$

Now, if we write everything in terms of sine, we obtain:

$$3\sin^4(x)-3\sin^2(x)+1$$

Factor and use a Pythagorean identity:

$$1-3\sin^2(x)\cos^2(x)$$

Apply double-angle identity for cosine:

$$\frac{4-3\left(1-\cos^2(2x)\right)}{4}$$

Pythagorean identity:

$$\frac{4-3\sin^2(2x)}{4}$$

Double-angle identity for cosine:

$$\frac{8-3\left(1-\cos(4x)\right)}{8}$$

$$\frac{3\cos(4x)+5}{8}$$

Hence, we now have:

$$S=\frac{1}{8}\sum_{k=1}^{44}\left(3\cos \left(4k^{\circ}\right)+5\right)+\frac{1}{8}$$

$$S=\frac{1}{8} \left(3\sum_{k=1}^{44} \left(3\cos \left(4k^{\circ} \right) \right)+44\cdot5+1 \right)$$

$$S=\frac{1}{8} \left(3\sum_{k=1}^{44} \left(\cos \left(4k^{\circ} \right) \right)+221 \right)$$

Now, observe that:

$$\cos\left(180^{\circ}-x\right)=-\cos(x)$$

And we may write:

$$S=\frac{1}{8} \left(3\sum_{k=1}^{22} \left(\cos \left(4k^{\circ} \right)-\cos \left(4k^{\circ} \right) \right)+221 \right)$$

The sum goes to zero, and we are left with:

$$S=\frac{221}{8}$$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
15
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K