Solve Trigonometric Sum: Find S Value

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Sum Trigonometric
Click For Summary
SUMMARY

The discussion centers around the evaluation of the trigonometric sum \( S = \sum_{k=1}^{89} \sin^6(k^{\circ}) \). Participants confirm that this sum is rational, with contributions from users Callme, Anemone, and kaliprasad. The consensus indicates that the methods used to derive the solution are similar, highlighting a collaborative effort in solving the problem. The exact value of \( S \) remains to be explicitly stated in the discussion.

PREREQUISITES
  • Understanding of trigonometric identities and properties
  • Familiarity with summation notation and techniques
  • Knowledge of rational numbers and their properties
  • Basic calculus concepts related to limits and continuity
NEXT STEPS
  • Research trigonometric identities for powers of sine functions
  • Explore techniques for evaluating sums of trigonometric functions
  • Learn about rational sums in trigonometry
  • Investigate the use of symmetry in trigonometric sums
USEFUL FOR

Mathematicians, students studying trigonometry, and educators looking to enhance their understanding of trigonometric sums and rational evaluations.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
It can be shown that the following sum:

$$S=\sum_{k=1}^{89}\left(\sin^6\left(k^{\circ}\right)\right)$$

is rational. Find the value of $S$. (Callme)
 
Mathematics news on Phys.org
My solution:

My plan is first to reduce the power of both $\sin^6 x$ and $\cos^6 x$ in their sum, this gives

$\begin{align*}\sin^6 x+\cos^6 x&=\sin^4 x(1-\cos^2 x)+\cos^4 x(1-\sin^2 x)\\&=\sin^4 x+\cos^4 x-(\sin x \cos x)^2(\sin^2 x+\cos^2 x)\\&=\dfrac{(3-4\cos 2x+\cos 4x)+(3+4\cos 2x+\cos 4x)}{8}-\dfrac{\sin^2 2x}{4}\\&=\dfrac{3+\cos 4x}{4}-\dfrac{1-\cos 4x}{8}\\&=\dfrac{5}{8}+\dfrac{3\cos 4x}{8}\end{align*}$

Group the given sum as follows we see that

$\sin^6 1^{\circ}+\sin^6 2^{\circ}+\cdots + \sin^6 88^{\circ}+\sin^6 89^{\circ}$

$=(\sin^6 1^{\circ}+\sin^6 89^{\circ})+(\sin^6 2^{\circ}+\sin^6 88^{\circ})+\cdots+(\sin^6 44^{\circ}+\sin^6 46^{\circ})+(\sin^6 45^{\circ})$

$=(\sin^6 1^{\circ}+\cos^6 1^{\circ})+(\sin^6 2^{\circ}+\cos^6 2^{\circ})+\cdots+(\sin^6 44^{\circ}+\cos^6 44^{\circ})+\left(\dfrac{1}{\sqrt{2}}\right)^6$

$=\left(\dfrac{5}{8}+\dfrac{3\cos 4^{\circ}}{8}\right)+\left(\dfrac{5}{8}+\dfrac{3\cos 8^{\circ}}{8}\right)+\cdots+\left(\dfrac{5}{8}+\dfrac{3\cos 176^{\circ}}{8}\right)+\dfrac{1}{8}$

$=44\left(\dfrac{5}{8}\right)+\dfrac{3}{8}((\cos 4^{\circ}+\cos 176^{\circ}+)+(\cos 8^{\circ}+\cos 172^{\circ})+\cdots+(\cos 88^{\circ}+\cos 92^{\circ}))+\dfrac{1}{8}$

$=44\left(\dfrac{5}{8}\right)+\dfrac{3}{8}(0)+\dfrac{1}{8}$

$=\dfrac{221}{8}$

$\therefore S=\dfrac{221}{8}$
 
MarkFL said:
It can be shown that the following sum:

$$S=\sum_{k=1}^{89}\left(\sin^6\left(k^{\circ}\right)\right)$$

is rational. Find the value of $S$. (Callme)

we have



$\sin^6 x + \cos^6 x$

= $(\sin ^2x + \cos^2x)^3 - 3 \sin ^2 x \cos^2 x(\sin ^2 x + \cos^2 x)$

= $1- 3 \sin ^2 x \cos^2 x$

= $ 1- \dfrac{3}{4}(2 \sin x\, \cos\, x)^2 $

= $1- \dfrac{3}{4}(sin ^2 2x)$

= $1- \dfrac{3}{8}(2 sin ^2 2x)$

= $1- \dfrac{3}{8}(1- cos 4x)$

= $ \dfrac{5}{8}+\dfrac{3}{8}\cos 4x$



as $\sin \,x^{\circ} = \cos \, (90-x)^{\circ}$

now

$S=\sum_{k=1}^{89}\left(\sin^6\left(k^{\circ}\right)\right)$

= $\sin^6 45^{\circ} + \sum_{k=1}^{44}\left(\sin^6\left(k^{\circ}\right)+\cos^6\left(k^{\circ}\right)\right )$

= $\dfrac{1}{8} + \sum_{k=1}^{44}(\dfrac{5}{8}+\dfrac{3}{8}\cos\,4k^{\circ})$

= $\dfrac{221}{8} + \dfrac{3}{8} \sum_{k=1}^{44}(\cos\,4k^{\circ})$

now as $cos 4^{\circ} + cos 4 * 44^{\circ} = 0$ so on so sum of the cosines is zeo so result = $\dfrac{221}{8}$hence $S = \dfrac{221}{8}$

Note: As I was solving Anemone beat me to it.
 
Thank you anemone and kaliprasad for participating! (Sun)

My solution is essentially the same:

I first used the co-function identity:

$$\sin\left(90^{\circ}-x\right)=\cos(x)$$

to express the sum as:

$$S=\sum_{k=1}^{44} \sin^6\left(k^{\circ}\right)+\sin^6\left(45^{\circ}\right)+\sum_{k=1}^{44} \cos^6\left(k^{\circ}\right)$$

Hence:

$$S=\sum_{k=1}^{44}\left(\sin^6\left(k^{\circ}\right)+\cos^6\left(k^{\circ}\right)\right)+\frac{1}{8}$$

Now consider the following (sum of 2 cubes and a Pythagorean identity):

$$\sin^6(x)+\cos^6(x)=\sin^4(x)-\sin^2(x)\cos^2(x)+\cos^4(x)$$

Now, if we write everything in terms of sine, we obtain:

$$3\sin^4(x)-3\sin^2(x)+1$$

Factor and use a Pythagorean identity:

$$1-3\sin^2(x)\cos^2(x)$$

Apply double-angle identity for cosine:

$$\frac{4-3\left(1-\cos^2(2x)\right)}{4}$$

Pythagorean identity:

$$\frac{4-3\sin^2(2x)}{4}$$

Double-angle identity for cosine:

$$\frac{8-3\left(1-\cos(4x)\right)}{8}$$

$$\frac{3\cos(4x)+5}{8}$$

Hence, we now have:

$$S=\frac{1}{8}\sum_{k=1}^{44}\left(3\cos \left(4k^{\circ}\right)+5\right)+\frac{1}{8}$$

$$S=\frac{1}{8} \left(3\sum_{k=1}^{44} \left(3\cos \left(4k^{\circ} \right) \right)+44\cdot5+1 \right)$$

$$S=\frac{1}{8} \left(3\sum_{k=1}^{44} \left(\cos \left(4k^{\circ} \right) \right)+221 \right)$$

Now, observe that:

$$\cos\left(180^{\circ}-x\right)=-\cos(x)$$

And we may write:

$$S=\frac{1}{8} \left(3\sum_{k=1}^{22} \left(\cos \left(4k^{\circ} \right)-\cos \left(4k^{\circ} \right) \right)+221 \right)$$

The sum goes to zero, and we are left with:

$$S=\frac{221}{8}$$
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K