MHB Solve Trigonometric Sum: Find S Value

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Sum Trigonometric
AI Thread Summary
The discussion centers around finding the rational value of the sum S, defined as S = ∑(sin^6(k°)) for k from 1 to 89. Participants, including Callme, Anemone, and kaliprasad, share their approaches to solving this problem. Anemone's solution is acknowledged as being reached before Callme's, indicating a collaborative effort. The conversation highlights the mathematical reasoning behind the sum's rationality. Ultimately, the focus remains on determining the exact value of S.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
It can be shown that the following sum:

$$S=\sum_{k=1}^{89}\left(\sin^6\left(k^{\circ}\right)\right)$$

is rational. Find the value of $S$. (Callme)
 
Mathematics news on Phys.org
My solution:

My plan is first to reduce the power of both $\sin^6 x$ and $\cos^6 x$ in their sum, this gives

$\begin{align*}\sin^6 x+\cos^6 x&=\sin^4 x(1-\cos^2 x)+\cos^4 x(1-\sin^2 x)\\&=\sin^4 x+\cos^4 x-(\sin x \cos x)^2(\sin^2 x+\cos^2 x)\\&=\dfrac{(3-4\cos 2x+\cos 4x)+(3+4\cos 2x+\cos 4x)}{8}-\dfrac{\sin^2 2x}{4}\\&=\dfrac{3+\cos 4x}{4}-\dfrac{1-\cos 4x}{8}\\&=\dfrac{5}{8}+\dfrac{3\cos 4x}{8}\end{align*}$

Group the given sum as follows we see that

$\sin^6 1^{\circ}+\sin^6 2^{\circ}+\cdots + \sin^6 88^{\circ}+\sin^6 89^{\circ}$

$=(\sin^6 1^{\circ}+\sin^6 89^{\circ})+(\sin^6 2^{\circ}+\sin^6 88^{\circ})+\cdots+(\sin^6 44^{\circ}+\sin^6 46^{\circ})+(\sin^6 45^{\circ})$

$=(\sin^6 1^{\circ}+\cos^6 1^{\circ})+(\sin^6 2^{\circ}+\cos^6 2^{\circ})+\cdots+(\sin^6 44^{\circ}+\cos^6 44^{\circ})+\left(\dfrac{1}{\sqrt{2}}\right)^6$

$=\left(\dfrac{5}{8}+\dfrac{3\cos 4^{\circ}}{8}\right)+\left(\dfrac{5}{8}+\dfrac{3\cos 8^{\circ}}{8}\right)+\cdots+\left(\dfrac{5}{8}+\dfrac{3\cos 176^{\circ}}{8}\right)+\dfrac{1}{8}$

$=44\left(\dfrac{5}{8}\right)+\dfrac{3}{8}((\cos 4^{\circ}+\cos 176^{\circ}+)+(\cos 8^{\circ}+\cos 172^{\circ})+\cdots+(\cos 88^{\circ}+\cos 92^{\circ}))+\dfrac{1}{8}$

$=44\left(\dfrac{5}{8}\right)+\dfrac{3}{8}(0)+\dfrac{1}{8}$

$=\dfrac{221}{8}$

$\therefore S=\dfrac{221}{8}$
 
MarkFL said:
It can be shown that the following sum:

$$S=\sum_{k=1}^{89}\left(\sin^6\left(k^{\circ}\right)\right)$$

is rational. Find the value of $S$. (Callme)

we have



$\sin^6 x + \cos^6 x$

= $(\sin ^2x + \cos^2x)^3 - 3 \sin ^2 x \cos^2 x(\sin ^2 x + \cos^2 x)$

= $1- 3 \sin ^2 x \cos^2 x$

= $ 1- \dfrac{3}{4}(2 \sin x\, \cos\, x)^2 $

= $1- \dfrac{3}{4}(sin ^2 2x)$

= $1- \dfrac{3}{8}(2 sin ^2 2x)$

= $1- \dfrac{3}{8}(1- cos 4x)$

= $ \dfrac{5}{8}+\dfrac{3}{8}\cos 4x$



as $\sin \,x^{\circ} = \cos \, (90-x)^{\circ}$

now

$S=\sum_{k=1}^{89}\left(\sin^6\left(k^{\circ}\right)\right)$

= $\sin^6 45^{\circ} + \sum_{k=1}^{44}\left(\sin^6\left(k^{\circ}\right)+\cos^6\left(k^{\circ}\right)\right )$

= $\dfrac{1}{8} + \sum_{k=1}^{44}(\dfrac{5}{8}+\dfrac{3}{8}\cos\,4k^{\circ})$

= $\dfrac{221}{8} + \dfrac{3}{8} \sum_{k=1}^{44}(\cos\,4k^{\circ})$

now as $cos 4^{\circ} + cos 4 * 44^{\circ} = 0$ so on so sum of the cosines is zeo so result = $\dfrac{221}{8}$hence $S = \dfrac{221}{8}$

Note: As I was solving Anemone beat me to it.
 
Thank you anemone and kaliprasad for participating! (Sun)

My solution is essentially the same:

I first used the co-function identity:

$$\sin\left(90^{\circ}-x\right)=\cos(x)$$

to express the sum as:

$$S=\sum_{k=1}^{44} \sin^6\left(k^{\circ}\right)+\sin^6\left(45^{\circ}\right)+\sum_{k=1}^{44} \cos^6\left(k^{\circ}\right)$$

Hence:

$$S=\sum_{k=1}^{44}\left(\sin^6\left(k^{\circ}\right)+\cos^6\left(k^{\circ}\right)\right)+\frac{1}{8}$$

Now consider the following (sum of 2 cubes and a Pythagorean identity):

$$\sin^6(x)+\cos^6(x)=\sin^4(x)-\sin^2(x)\cos^2(x)+\cos^4(x)$$

Now, if we write everything in terms of sine, we obtain:

$$3\sin^4(x)-3\sin^2(x)+1$$

Factor and use a Pythagorean identity:

$$1-3\sin^2(x)\cos^2(x)$$

Apply double-angle identity for cosine:

$$\frac{4-3\left(1-\cos^2(2x)\right)}{4}$$

Pythagorean identity:

$$\frac{4-3\sin^2(2x)}{4}$$

Double-angle identity for cosine:

$$\frac{8-3\left(1-\cos(4x)\right)}{8}$$

$$\frac{3\cos(4x)+5}{8}$$

Hence, we now have:

$$S=\frac{1}{8}\sum_{k=1}^{44}\left(3\cos \left(4k^{\circ}\right)+5\right)+\frac{1}{8}$$

$$S=\frac{1}{8} \left(3\sum_{k=1}^{44} \left(3\cos \left(4k^{\circ} \right) \right)+44\cdot5+1 \right)$$

$$S=\frac{1}{8} \left(3\sum_{k=1}^{44} \left(\cos \left(4k^{\circ} \right) \right)+221 \right)$$

Now, observe that:

$$\cos\left(180^{\circ}-x\right)=-\cos(x)$$

And we may write:

$$S=\frac{1}{8} \left(3\sum_{k=1}^{22} \left(\cos \left(4k^{\circ} \right)-\cos \left(4k^{\circ} \right) \right)+221 \right)$$

The sum goes to zero, and we are left with:

$$S=\frac{221}{8}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top