MHB Solve Volume of Circle Rotated Around X-axis: Group Take Home

Click For Summary
SUMMARY

The volume of a torus generated by rotating a circle around the x-axis is calculated using the formula \( V = \pi(2)^2(2\pi(5)) = 40\pi^2 \). The circle's equation is \( x^2 + (y - 5)^2 = 4 \), with inner and outer radii defined as \( y = 5 - \sqrt{4 - x^2} \) and \( y = 5 + \sqrt{4 - x^2} \), respectively. The integration process involves using washers and substitution, ultimately leading to the correct volume calculation of \( 40\pi^2 \). Misunderstandings regarding the setup and the relationship between inner and outer volumes were clarified during the discussion.

PREREQUISITES
  • Understanding of calculus, specifically integration techniques.
  • Familiarity with the concept of volumes of revolution.
  • Knowledge of the washer method for calculating volumes.
  • Ability to perform trigonometric substitutions in integrals.
NEXT STEPS
  • Study the washer method for volumes of revolution in detail.
  • Learn about trigonometric substitution techniques in calculus.
  • Explore the properties and applications of toroidal shapes in geometry.
  • Review integration techniques involving definite integrals and their applications in volume calculations.
USEFUL FOR

Students studying calculus, educators teaching integration techniques, and anyone interested in geometric applications of calculus, particularly in calculating volumes of solids of revolution.

Pull and Twist
Messages
48
Reaction score
0
I am working on a take home with a group of students and we all got different answers for this problem... can anyone look over it and tell me where I am going wrong?? Let me know if any of my work is confusing...

View attachment 3971
 

Attachments

  • Untitled-1.jpg
    Untitled-1.jpg
    41 KB · Views: 90
Physics news on Phys.org
Well, the solid is a torus, and so we know its volume is:

$$V=\pi(2)^2(2\pi(5))=40\pi^2$$

You may wish to look at this thread:

https://mathhelpboards.com/threads/roisins-question-at-yahoo-answers-regarding-the-volume-of-a-torus.7992/
 
Last edited:
MarkFL said:
Well, the solid is a torus, and so we know its volume is:

$$V=\pi(2)^2(2\pi(5))=40\pi^2$$

You may wish to look at this thread:

http://mathhelpboards.com/questions-other-sites-52/roisins-question-yahoo-answers-regarding-volume-torus-7992.html?highlight=torus

I looked at that link and I'm confused as to how you incorporate the fact that the circle is centered at (0,5). I'm not really following the setup in that link.
 
PullandTwist said:
I am working on a take home with a group of students and we all got different answers for this problem... can anyone look over it and tell me where I am going wrong?? Let me know if any of my work is confusing...

The whole circle has equation $\displaystyle \begin{align*} x^2 + \left( y - 5 \right) ^2 = 4 \end{align*}$, so if we use washers, the inner radius is $\displaystyle \begin{align*} y = 5 - \sqrt{4 - x^2} \end{align*}$ and the outer radius is $\displaystyle \begin{align*} y = 5 + \sqrt{4 - x^2} \end{align*}$, so the volume is

$\displaystyle \begin{align*} V &= \pi \int_{-2}^2{ \left( 5 + \sqrt{4 - x^2} \right) ^2 - \left( 5 - \sqrt{4 - x^2 } \right) ^2 \,\mathrm{d}x } \\ &= 2\pi \int_0^2{ \left( 5 + \sqrt{4 - x^2} \right) ^2 - \left( 5 - \sqrt{4 - x^2} \right) ^2 \, \mathrm{d}x } \\ &= 2\pi \int_0^2{ \left[ \left( 5 + \sqrt{4 - x^2} \right) - \left( 5 - \sqrt{4 - x^2} \right) \right] \left[ \left( 5 + \sqrt{ 4 - x^2} \right) + \left( 5 - \sqrt{4 - x^2} \right) \right] \,\mathrm{d}x } \\ &= 2\pi \int_0^2{ 20\,\sqrt{4 - x^2} \,\mathrm{d}x } \\ &= 40\pi \int_0^2{ \sqrt{ 4 - x^2} \,\mathrm{d}x } \end{align*}$

Now with the substitution $\displaystyle \begin{align*} x = 2\sin{(t)} \implies \mathrm{d}x = 2\cos{(t)}\,\mathrm{d}t \end{align*}$ and noting that when $\displaystyle \begin{align*} x = 0, t = 0 \end{align*}$ and when $\displaystyle \begin{align*} x = 2, t = \frac{\pi}{2} \end{align*}$, the integral becomes

$\displaystyle \begin{align*} 40\pi \int_0^2{\sqrt{4 - x^2}\,\mathrm{d}x} &= 40\pi \int_0^{\frac{\pi}{2}}{ \sqrt{4 - \left[ 2\sin{(t)} \right] ^2 }\,2\cos{(t)}\,\mathrm{d}t} \\ &= 40\pi \int_0^{\frac{\pi}{2}}{\sqrt{4 - 4\sin^2{(t)}}\, 2\cos{(t)}\,\mathrm{d}t} \\ &= 40\pi \int_0^{\frac{\pi}{2}}{ 2\cos{(t)} \, 2\cos{(t)}\,\mathrm{d}t } \\ &= 160\pi \int_0^{\frac{\pi}{2}}{ \cos^2{(t)}\,\mathrm{d}t } \\ &= 160\pi \int_0^{\frac{\pi}{2}}{\frac{1}{2} \left[ 1 + \cos{(2t)} \right] \,\mathrm{d}t} \\ &= 80\pi \int_0^{\frac{\pi}{2}}{1 + \cos{(2t)}\,\mathrm{d}t} \\ &= 80\pi \left[ t + \frac{1}{2}\sin{(2t)} \right]_0^{\frac{\pi}{2}} \\ &= 80\pi \left[ \left( \frac{\pi}{2} + 0 \right) - \left( 0 + 0 \right) \right] \\ &= 80\pi \left( \frac{\pi}{2} \right) \\ &= 40 \pi ^2 \end{align*}$
 
PullandTwist said:
I looked at that link and I'm confused as to how you incorporate the fact that the circle is centered at (0,5). I'm not really following the setup in that link.

That problem is in more general terms, and is rotated about the $y$-axis instead, but the method would be essentially the same. :D
 
Thank you guys. That helped me immensely.

After thinking about it I realized where I was going wrong. I was thinking that I could bisect the torus at y=5 and solve for half the volume and then double it.

I finally realized that the volume of the inner part would actually be less then that of the outer part as it travels less distance to complete the full rotation. I had to imagine cutting a doughnut to visualize it.
 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
9K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
7
Views
10K