MHB Solving a Boundary Value Problem: Non-Uniform vs. Uniform Partitioning

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)Consider the boundary value problem
$\left\{\begin{matrix}
- \epsilon u''+u'=1 &, x \in [0,1] \\
u(0)=u(1)=0 &
\end{matrix}\right.$
where $\epsilon$ is a positive given constant.
I have to express a finite difference method for its numerical solution.
How can we know whether it is better to use non-uniform partition or uniform partition?
 
Mathematics news on Phys.org
Well, you can always do the experiment and see. This BVP has an exact answer that's not too difficult to obtain. If you do the substitution $v=u'$, you get a first-order linear DE, $v'-v/\varepsilon=-1/\varepsilon$, with solution
$$v=1+C_1 e^{x/\varepsilon}.$$
Integrating once yields
$$u=x+\varepsilon C_1 e^{x/\varepsilon}+C_2.$$
Applying the boundary conditions yields the system
\begin{align*}
\varepsilon C_1+C_2&=0 \\
\varepsilon C_1 e^{1/\varepsilon}+C_2&=-1,
\end{align*}
with solution
\begin{align*}
C_1&=\frac{1}{\varepsilon(1-e^{1/\varepsilon})} \\
C_2&=\frac{1}{e^{1/\varepsilon}-1}.
\end{align*}
Hence, the exact solution is
$$u(x)=x+\frac{e^{x/\varepsilon}-1}{1-e^{1/\varepsilon}}.$$
You can use this to compare how good the two numerical solutions are.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top