Solving a Celestial Mechanics Task with Velocity Vector Scattering

AI Thread Summary
The discussion focuses on solving a celestial mechanics task involving velocity vector scattering in the reference frame of the sun. The initial assumption is that the planet's velocity vector is scattered by an angle θ, leading to confusion in calculating the final velocity and kinetic energy change. It is clarified that the change in kinetic energy should be expressed relative to the planet, simplifying the relationship between initial and final velocities. The correct approach emphasizes using the velocity of the planet instead of the scattered velocity in the sun's frame. Ultimately, the participant successfully resolves the task with guidance from others.
Lambda96
Messages
233
Reaction score
77
Homework Statement
Find the difference in kinetic energy when the velocities of the object and planet are antiparallel
Relevant Equations
none
Hi,

the task is as follows

Bildschirmfoto 2022-11-15 um 20.19.02.png

Bildschirmfoto 2022-11-15 um 20.19.25.png
Unfortunately, I am not getting anywhere at all with task c. I have now proceeded as follows:

I assume that the calculation takes place in the reference system of the sun. In the task the following is valid, $$\vec{v}_{si}=-s\vec{v}_p$$ I have now simply assumed that the planet is scattered the velocity vector by the angle $$\theta$$ so the following is valid for the final velocity

$$\vec{v}_{sf}=-s\vec{v}_p*cos(\theta)$$

After that I simply made the difference in the kinetic energy, i.e.$$E_{kin,f}-E_{kin,i}=\frac{1}{2}m\vec{v}_{sf}^2 - \frac{1}{2}m\vec{v}_{si}^2$$If I now insert $$\vec{v}_{sf}=-s\vec{v}_p*cos(\theta)$$ and $$\vec{v}_{si}=-s\vec{v}_p$$, I immediately see that I do not get the required equation, since I have terms like $$s^2$$ and $$cos(\theta)^2$$. But I also don't understand how to get this equation where $$s$$ and $$cos(\theta)$$ occur, you have to square the velocity for the kinetic energy.
 
Physics news on Phys.org
Lambda96 said:
I assume that the calculation takes place in the reference system of the sun.
Part (b) is setting you up for part (c). Thus, you can express the change in KE of ##\mathrm{\mathring{A}}## relative to the sun in terms of the initial and final velocities of ##\mathrm{\mathring{A}}## relative to the planet P! This makes things easier because the initial and final velocities relative to P have a simple relationship (as shown in part (a)).

Lambda96 said:
In the task the following is valid, $$\vec{v}_{si}=-s\vec{v}_p$$
OK. Can you use this to find an expression for ##\vec{v}_{pi}## in terms of ##s## and ##\vec{v}_P##?

Lambda96 said:
I have now simply assumed that the planet is scattered the velocity vector by the angle $$\theta$$ so the following is valid for the final velocity

$$\vec{v}_{sf}=-s\vec{v}_p*cos(\theta)$$
This equation can't be right. The right-hand side represents a vector quantity that has a direction either parallel or antiparallel to ##\vec{v}_P## (depending on the sign of ##\cos \theta##). But that's certainly not the right direction for ##\vec{v}_{sf}##. However, if you use the expression for the change in KE as given in part (b), you don't need ##\vec{v}_{sf}##. Instead, you need ##\vec{v}_{pf}##. Or, more specifically, you need ##\vec{v}_{pf} \cdot \vec{v}_P##.

Note that ##\mathrm{\mathring{A}}## is scattered by the angle ##\theta## in the frame of reference of the planet, not in the frame of reference of the sun.
 
Last edited:
  • Like
Likes jim mcnamara
Thanks for your help TSny 👍, with your help I was able to solve the task of 🙂
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top