MHB Solving a Complex Integral: Substituting tg (x/2)

Click For Summary
The discussion revolves around solving a complex integral after substituting tg(x/2), leading to the expression 4/((1-z^2)(3-z^2)). Participants suggest using partial fractions to simplify the integral further and explore alternative substitutions, such as u = cos(x). There is a consensus that while the integral appears lengthy, it is manageable with the right techniques. The conversation emphasizes the importance of factoring and recognizing known antiderivatives to facilitate the solution. Overall, the integral can be approached effectively with the discussed methods.
leprofece
Messages
239
Reaction score
0
integral View attachment 2995

This is my work but I got a very looong integral to solve
after substitute tg (x/2) based in my former exercise

View attachment 2996
it remains 4/ (1-z^2)(3-z^2)
 

Attachments

  • scan.gif
    scan.gif
    393 bytes · Views: 101
  • Scan [1024x768].jpg
    Scan [1024x768].jpg
    36.3 KB · Views: 113
Physics news on Phys.org
leprofece said:
integral View attachment 2995

This is my work but I got a very looong integral to solve
after substitute tg (x/2) based in my former exercise

https://www.physicsforums.com/attachments/2996
it remains 4/ (1-z^2)(3-z^2)

Each of those can be factorised further and you can apply partial fractions.

However I think it might be possible to avoid the Wierstrauss Substitution...

$\displaystyle \begin{align*} \int{ \frac{1 + \cos{(x)}}{\cos{(x)} \left[ 1 + 2\cos{(x)} \right] } \, \mathrm{d}x} &= \int{ \frac{ \left[ 1 + \cos{(x)} \right] \left[ 1 - \cos{(x)} \right] }{ \cos{(x)} \left[ 1 + 2\cos{(x)} \right] \left[ 1 - \cos{(x)} \right] } \,\mathrm{d}x} \\ &= \int{ \frac{1 - \cos^2{(x)}}{\cos{(x)} \left[ 1 + 2\cos{(x)} \right] \left[ 1 - \cos{(x)} \right] } \, \mathrm{d}x } \\ &= \int{ \frac{\sin^2{(x)} }{ \cos{(x)} \left[ 1 + 2\cos{(x)} \right] \left[ 1 - \cos{(x)} \right] } \,\mathrm{d}x} \\ &= -\int{ \frac{\sqrt{ 1 - \cos^2{(x)} } \left[ - \sin{(x)} \right] }{ \cos{(x)} \left[ 1 + 2\cos{(x)} \right] \left[ 1 - \cos{(x)} \right] } \, \mathrm{d}x } \end{align*}$

Now you could try the substitution $\displaystyle \begin{align*} u = \cos{(x)} \implies \mathrm{d}u = -\sin{(x)} \,\mathrm{d}x \end{align*}$...
 
Since you're at the home stretch, elaborating on what Prove It said:

$$=\int \frac{4}{(1-z^2)(3-z^2)} \,dz$$
$$=\int \frac{4}{(z^2-1)(z^2-3)}\,dz$$
$$=\int \frac{4}{(z+1)(z-1)(z^2-3)}\,dz$$

Now apply partial fractions. :D
 
Rido12 said:
Since you're at the home stretch, elaborating on what Prove It said:

$$=\int \frac{4}{(1-z^2)(3-z^2)} \,dz$$
$$=\int \frac{4}{(z^2-1)(z^2-3)}\,dz$$
$$=\int \frac{4}{(z+1)(z-1)(z^2-3)}\,dz$$

Now apply partial fractions. :D

$\displaystyle \begin{align*} &= \int{ \frac{4}{ \left( z + 1 \right) \left( z - 1 \right) \left( z + \sqrt{3} \right) \left( z - \sqrt{3} \right) } \, \mathrm{d}z} \end{align*}$
 
Ok let's see
this integral is too long according to wolphramalpha
maybe as prove it did it, it is easier
thanks anyway
 
I'm not Wolfram Alpha, nor a CAS, but the integral does seem manageable.

$$=\int \frac{4}{(z^2-1)(z^2-3)}\,dz$$

I was hesitant to factor the $z^2-3$ because it has a known antiderivative, and if you know what that is, it would be easier to split the integral as

$$=\int \frac{4}{(z^2-1)(z^2-3)}\,dz$$

Otherwise, if you want to further pursue this problem, work from and here and try partial fractions.

\begin{align*} &= \int{ \frac{4}{ \left( z + 1 \right) \left( z - 1 \right) \left( z + \sqrt{3} \right) \left( z - \sqrt{3} \right) } \, \mathrm{d}z} \end{align*}
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
4
Views
3K
Replies
21
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
1K