Yes, Your equation is just a relation between two variables, x and y.
Soution? Well, you could call the equation x = ... in #14 a solution.
You easily see from it that the relation between x and y it specifies is continuous except at x = 0, and that it covers an infinite range.
You have a simple relation y = a function of x in #14. You can work out a relation of form x = a function of y as told - but why bother? It is still saying the same thing in a more complicated way. in other cases you may not be able to work it out (cannot solve the equation algebraically) so you always go for the one that is simpler - in fact you are lucky that there is one, in many cases you can't get either an x =... or a y =... form, though you still have a relation which corresponds to a curve in two dimensions.
If you want whole number solutions, at least with small whole numbers, then I think the best way is simply to use a graphing calculator or app and see whether the graphed function goes through any small numbers. That immediately gave me your solution and also x = -2, y = -5.
I suspect you could prove without too much difficulty that there are no other whole number (er, integer) solutions but I am not personally tempted to make the effort.