I Solving an equation with a parameter and a derivative

homeworkhelpls
Messages
41
Reaction score
1
TL;DR Summary
For 3(i)(b) does anyone know how to find the value of k?
1676625636034.png
idk how to start after finding the second derivative
 

Attachments

  • 1676625699080.png
    1676625699080.png
    4.6 KB · Views: 129
Mathematics news on Phys.org
You have
$$
\frac{d^2y}{dx^2} = 4 - \frac{15}{4} \sqrt{x}
$$
You can either rearrange that equation so that it looks like
$$
\frac{d^2y}{dx^2} + k \sqrt{x} = 4
$$
and identify what ##k## is, or use a more robust approach by substituting the ##\frac{d^2y}{dx^2}## you have found into that second equation,
$$
\left(4 - \frac{15}{4} \sqrt{x} \right) + k \sqrt{x} = 4
$$
and solve for ##k##.
 
Thread closed. The OP has been warned five times previously that homework-type questions must be posted in one of the forum sections devoted to homework questions.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top