Solving an integral using Differentiation under the integral sign

Click For Summary

Discussion Overview

The discussion revolves around the evaluation of two integrals involving cosine functions and their differences, specifically using the technique of differentiation under the integral sign. Participants explore the convergence and divergence of these integrals, as well as the implications of manipulating them mathematically.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants assert that both integrals diverge, leading to an undefined difference of the form $\infty - \infty$.
  • Others propose using Euler's formula to express the cosine function in terms of complex exponentials, suggesting a different approach to the integrals.
  • A participant introduces an alternative integral that converges, suggesting it may be more appropriate to analyze.
  • Some participants discuss the application of the Leibniz Integral Rule and express concerns about its validity under certain conditions, particularly when the limits of integration are infinite.
  • There are references to advanced techniques such as the Laplace Transform for evaluating integrals, indicating varying levels of familiarity with mathematical methods among participants.
  • One participant expresses uncertainty about the simplification of integrals involving complex exponentials.
  • Another participant shares a derived formula for an integral involving a parameter, indicating a potential pathway to a solution.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the validity of the original integrals or the proposed methods for evaluating them. There are competing views on the appropriateness of the techniques used and the implications of divergence.

Contextual Notes

Limitations include the divergence of the original integrals, the potential misapplication of differentiation under the integral sign, and unresolved mathematical steps regarding the manipulation of infinite integrals.

MBM1
Messages
3
Reaction score
0
I am Trying to solve the difference of the two following integrals:

(1) $g_{1}(x) = \int_{0}^{\infty} \frac{cos(kx)}{k}\,dk$
(2) $g_{2}(x) = \int_{0}^{\infty} \frac{\exp(-2k)cos(kx)}{k}\,dk$

I read the thread on Advanced Integration Techniques and it mentioned the Differentiation under the integral sign technique which I am unfamiliar to. Nonetheless I tried it and found ,
$g_{1}(x)=\infty $ and $g_{2}(x)= \infty + \frac{1}{2}ln(1+\frac{4}{x^2})$

Hence $g_{1}(x) - g_{2}(x) = -\frac{1}{2}ln(1+\frac{4}{x^2})$.

What I would like to know is my final answer true or false and if it is false where did I make an invalid assumption or mistake?
 
Physics news on Phys.org
MBM said:
I am Trying to solve the difference of the two following integrals:

(1) $g_{1}(x) = \int_{0}^{\infty} \frac{cos(kx)}{k}\,dk$
(2) $g_{2}(x) = \int_{0}^{\infty} \frac{\exp(-2k)cos(kx)}{k}\,dk$

I read the thread on Advanced Integration Techniques and it mentioned the Differentiation under the integral sign technique which I am unfamiliar to. Nonetheless I tried it and found ,
$g_{1}(x)=\infty $ and $g_{2}(x)= \infty + \frac{1}{2}ln(1+\frac{4}{x^2})$

Hence $g_{1}(x) - g_{2}(x) = -\frac{1}{2}ln(1+\frac{4}{x^2})$.

What I would like to know is my final answer true or false and if it is false where did I make an invalid assumption or mistake?

You got the difference $\infty - \infty$ and you set it equal to $0$, but this difference is undefined.Using Euler's formula $$e^{ix}=\cos{(x)}+i \sin{(x)}$$
we get $$\cos{(x)}=\frac{e^{ix}+e^{-ix}}{2}$$

Therefore we have the following:

$$\int_{0}^{\infty} \frac{cos(kx)}{k}\,dk- \int_{0}^{\infty} \frac{e^{-2k}cos(kx)}{k}\,dk =\int_{0}^{\infty} \frac{e^{ikx}+e^{-ikx}}{2k}\,dk -\int_{0}^{\infty} \frac{e^{-2k}(e^{ikx}+e^{-ikx})}{2k}\,dk= \\ \int_{0}^{\infty} \frac{e^{ikx}+e^{-ikx}}{2k}\,dk -\int_{0}^{\infty} \frac{e^{(ix-2)k}+e^{-(ix+2)k}}{2k}\,dk$$
 
mathmari said:
You got the difference $\infty - \infty$ and you set it equal to $0$, but this difference is undefined.Using Euler's formula $$e^{ix}=\cos{(x)}+i \sin{(x)}$$
we get $$\cos{(x)}=\frac{e^{ix}+e^{-ix}}{2}$$

Therefore we have the following:

$$\int_{0}^{\infty} \frac{cos(kx)}{k}\,dk- \int_{0}^{\infty} \frac{e^{-2k}cos(kx)}{k}\,dk =\int_{0}^{\infty} \frac{e^{ikx}+e^{-ikx}}{2k}\,dk -\int_{0}^{\infty} \frac{e^{-2k}(e^{ikx}+e^{-ikx})}{2k}\,dk= \\ \int_{0}^{\infty} \frac{e^{ikx}+e^{-ikx}}{2k}\,dk -\int_{0}^{\infty} \frac{e^{(ix-2)k}+e^{-(ix+2)k}}{2k}\,dk$$
@ mathmari, thank you for your response. You have decomposed the integral into 4 complex exponential integrals multiplied by a hyperbola however I do not see how it simplifies the integral, i.e. consider the following integral

$\int_{0}^{\infty} \frac{\exp(ikx)}{2k}\,dk$ is still difficult to solve with the knowledge that I have. (or maybe I am not thinking)
 
MBM said:
I am Trying to solve the difference of the two following integrals:

(1) $g_{1}(x) = \int_{0}^{\infty} \frac{cos(kx)}{k}\,dk$
(2) $g_{2}(x) = \int_{0}^{\infty} \frac{\exp(-2k)cos(kx)}{k}\,dk$

I read the thread on Advanced Integration Techniques and it mentioned the Differentiation under the integral sign technique which I am unfamiliar to. Nonetheless I tried it and found ,
$g_{1}(x)=\infty $ and $g_{2}(x)= \infty + \frac{1}{2}ln(1+\frac{4}{x^2})$

Hence $g_{1}(x) - g_{2}(x) = -\frac{1}{2}ln(1+\frac{4}{x^2})$.

What I would like to know is my final answer true or false and if it is false where did I make an invalid assumption or mistake?

The problem is bad set because both integrals diverge. It is reasonable instead the calculation of the integral...

$\displaystyle g(x) = \int_{0}^{\infty} \frac{1 - e^{-2\ k}}{k}\ \cos k\ x\ dk\ (1)$

... which converges. The calculation of (1) is realatively easy using some advanced technique like the Laplace Transform, much more difficult using an elementary approach...

Kind regards

$\chi$ $\sigma$
 
Last edited:
$$F(y)=\int^\infty_0 \frac{\cos(x)(1-e^{-2xy})}{x} dx$$

$$F'(y)=2\int^\infty_0 e^{-2xy}\cos(x)\,dx = \frac{4y}{1+4y^2}$$

$$F(y)=\frac{\log(1+4y^2)}{2}$$

Hence we have

$$F\left(\frac{1}{y}\right)=\int^\infty_0 \frac{\cos(x)(1-e^{-2\frac{x}{y}})}{x} dx$$

Now let $x/y=t$

$$\int^\infty_0 \frac{\cos(yt)(1-e^{-2t})}{t} dt =\frac{\log\left(1+\frac{4}{y^2} \right)}{2} $$
 
ZaidAlyafey said:
$$F(y)=\int^\infty_0 \frac{\cos(x)(1-e^{-2xy})}{x} dx$$

$$F'(y)=2\int^\infty_0 e^{-2xy}\cos(x)\,dx = \frac{4y}{1+4y^2}$$

$$F(y)=\frac{\log(1+4y^2)}{2}$$

Hence we have

$$F\left(\frac{1}{y}\right)=\int^\infty_0 \frac{\cos(x)(1-e^{-2\frac{x}{y}})}{x} dx$$

Now let $x/y=t$

$$\int^\infty_0 \frac{\cos(yt)(1-e^{-2t})}{t} dt =\frac{\log\left(1+\frac{4}{y^2} \right)}{2} $$

thanks a lot. how did you become good in math, do you have any books you could recommend for me to read?
 
MBM said:
thanks a lot. how did you become good in math, do you have any books you could recommend for me to read?

You're welcome.

Essentially, my knowledge (of this particular field) is based on reading different articles, papers and books. I would suggest some books but that depends on the area you're interested in.

Since this is not the best place to discuss that , I prefer you present your concerns via visitor messages or private messages.
 
ZaidAlyafey said:
$$F(y)=\int^\infty_0 \frac{\cos(x)(1-e^{-2xy})}{x} dx$$

$$F'(y)=2\int^\infty_0 e^{-2xy}\cos(x)\,dx = \frac{4y}{1+4y^2}$$

From the formal point of view there is some problem in this step since the rule of derivation under the integral sign is valid only if the range of integration is limited...

Leibniz Integral Rule -- from Wolfram MathWorld

In this particular case, it should be noted that setting y = 0 would lead to the conclusion that ...

$\displaystyle F^{\ '} (0) = \int_{0}^{\infty} \cos x\ dx = 0\ (1)$

which of course is not true...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K