MHB Solving an Integral with a Right Endpoint Riemann Sum

Click For Summary
The discussion focuses on solving the integral of the function f(t) = 1 from x to x^2 using the right endpoint Riemann sum. It establishes that the integral can be expressed as the limit of a sum, leading to the conclusion that the integral equals x^2 - x when x is less than x^2. For cases where x equals 0 or 1, the integral evaluates to 0. If x^2 is less than x, the integral is redefined as the negative of the integral from x^2 to x, confirming that the result remains x^2 - x for all real x. The analysis provides a comprehensive understanding of the integral's behavior across different intervals.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Turn the integral to a limit of the right endpoint Reimann sum?
1dt from x to x^2

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
In general, consider the interval $[a,b]$, and the partition
$$a,a+1\frac{b-a}{n},a+2\frac{b-a}{n},\ldots,a+n\frac{b-a}{n}$$
Then,
$$\int_a^bf(t)dt=\lim_{n\to +\infty}\sum_{k=1}^n\frac{b-a}{n}f\left(a+k\frac{b-a}{n}\right)$$
In our case $f(t)=1$ so,
$$\int_a^bf(t)dt=\lim_{n\to +\infty}\sum_{k=1}^n\frac{b-a}{n}=\lim_{n\to +\infty}
(b-a)=b-a$$
That is, $\displaystyle\int_x^{x^2}1dt=x^2-x$ (if $x<x^2$).

For $x^2-x=0$ i.e. $x=1$ or $x=0$ the integral is $0$. If $x^2<x$, use $\displaystyle\int_x^{x^2}1dt=-\displaystyle\int_{x^2}^{x}1dt$

Hence, $\displaystyle\int_x^{x^2}1dt=x^2-x$ for all $x\in\mathbb{R}$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K