Solving Distance Traveled Using Formulas vs. Graphs

AI Thread Summary
The discussion centers on the discrepancies in calculating distance traveled by a body using different methods: formulas for accelerating bodies and graphical representations. The user finds conflicting results when applying the formula for distance in the 5th second and calculating average speed over 6 seconds, leading to confusion about the correct approach. It is clarified that the area under the velocity-time graph should be interpreted correctly, distinguishing between distance and displacement. The conversation highlights the importance of understanding the difference between average speed and average velocity, as well as the correct application of formulas. Ultimately, accurate calculations depend on proper interpretation of the graph and formulas used.
Callmelucky
Messages
144
Reaction score
30
Homework Statement
calculate the distance traveled by a body given the graph
Relevant Equations
##d=V_0\times t + \frac{1}{2}\times at^{2}##, ##d=\frac{vt}{2}##
So basically I wonder why the distance traveled by a body in the 5th second gives different results when calculated by the formula for accelerating body(##d=V_0\times t + \frac{1}{2}\times at^{2}##) and when calculated using a graph(formula for the surface of the triangle).

Here is the graph of the problem(pic below).
When I calculate distance traveled using ##d=\frac{vt}{2}## I get ##d=\frac{\Delta v\Delta t}{2}=\frac{4\times 1}{2}=2m##, and when I do the same using ##d=V_0\times t + \frac{1}{2}\times at^{2}## I get ##d=V_0\times t+\frac{1}{2}\times at^{2} = 2 + (-2)=0## because ##a=\frac{\Delta v}{\Delta t}= -4##.

If someone can please tell me where I am wrong, thank you.
 

Attachments

  • WhatsApp Image 2023-03-17 at 19.04.43.jpeg
    WhatsApp Image 2023-03-17 at 19.04.43.jpeg
    47.2 KB · Views: 101
Physics news on Phys.org
Where does the d=vt/2 expression come from ?
 
BvU said:
Where does the d=vt/2 expression come from ?
my textbook, it's just marked as s instead of d
 

Attachments

  • WhatsApp Image 2023-03-17 at 19.18.44.jpeg
    WhatsApp Image 2023-03-17 at 19.18.44.jpeg
    14.6 KB · Views: 104
Callmelucky said:
my textbook, it's just marked as s instead of d
There must be a typo. The area of the shaded portion (a trapezoid) is
##d = \dfrac{(v_0+v)t}{2} ##

and this formula will give consistent results with the other.

-Dan
 
  • Like
Likes Callmelucky
topsquark said:
There must be a typo. The area of the shaded portion (a trapezoid) is
##d = \dfrac{(v_0+v)t}{2} ##

and this formula will give consistent results with the other.

-Dan
Does that then mean that the body didn't cross any distance for that one second?
One more question, I have calculated that the average speed in the first 6 seconds is 3/2 m/s but the solution in the textbook is 10/6 m/s. I used the same formula for distance traveled by accelerating the body for the first 2 seconds which is ##d=V_0\times t + \frac{1}{2}\times at^{2} = 1\times 2+\frac{1}{2}\times 0.5\times 4= 3m##, after that, distance traveled from 2nd to 5th second is 6m(v*t=2*3=6m) and distance from 5th to 6th second is 0m. So that is 9m/6sec= 3/2 m/s but the solution in the textbook is 10/9 m/s, can you please explain how?
Thank you
 
Callmelucky said:
One more question, I have calculated that the average speed in the first 6 seconds is 3/2 m/s but the solution in the textbook is 10/6 m/s. I used the same formula for distance traveled by accelerating the body for the first 2 seconds which is ##d=V_0\times t + \frac{1}{2}\times at^{2} = 1\times 2+\frac{1}{2}\times 0.5\times 4= 3m##, after that, distance traveled from 2nd to 5th second is 6m(v*t=2*3=6m) and distance from 5th to 6th second is 0m. So that is 9m/6sec= 3/2 m/s but the solution in the textbook is 10/9 m/s, can you please explain how?
Thank you
The distance traveled from from the 5th to the 6th second is not zero. The displacement is zero. The distance traveled is the sum of the "go" trip (5.0-5.5 s) and the "return" trip (5.5-6.0 s.) Average speed is what the odometer records over the entire trip divided by the duration of the trip.
 
To add to the above, you need to discriminate distance from displacement and speed from velocity.
In a V/T graph, areas below the time axis count as positive if you want distance travelled and average speed, but negative if you want displacement and average velocity.
 
  • Like
Likes SammyS and topsquark
Back
Top