Solving Equation to Analyze Steady State Current

AI Thread Summary
The discussion revolves around solving the equation for steady state current, leading to the expression i(t) = (V/R)(1-e^(-Rt/L)). The user initially calculated the time t1 to reach 90% of the steady state current as approximately 3.53 seconds, but this conflicted with the book's answer of 0.16 seconds. After some back-and-forth, it was revealed that a typographical error had occurred, but the book's answer still raised questions about the problem's wording or interpretation. Participants suggested verifying both values in the equation to determine which is correct. Ultimately, the conversation highlights the importance of careful algebra and clarity in problem statements.
lorenz0
Messages
151
Reaction score
28
Homework Statement
A solenoid (##L=230mH##) is connected to a constant voltage source via a resistive wire with resistance ##R=0.15\Omega##. Initially, the circuit is open.
How much time after closing the circuit is the current in the solenoid 10% less than the steady-state current?
Relevant Equations
##V-iR-L\frac{di}{dt}=0##
I set up the equation ##V-iR-L\frac{di}{dt}=0##, with ##i(0)## and by solving it I got ##i(t)=\frac{V}{R}(1-e^{-\frac{R}{L}t})##.
Then, since the steady state current is ##i_s=\frac{V}{R}## I imposed the condition ##i(t_1)=\frac{9}{10}\frac{V}{R}\Leftrightarrow \frac{9}{10}\frac{V}{R}=\frac{V}{R}(1-e^{-\frac{R}{L}t_1})\Leftrightarrow t_1=\frac{L}{R}\ln(10)\approx 3.53 s##, but this answer is different from the solution proposed in the book I took the problem from.

I don't see what I am doing wrong here, so I would appreciate if someone would point me in the right direction, thanks.
 
Last edited:
Physics news on Phys.org
lorenz0 said:
\frac{9}{10}\frac{V}{R}\Leftrightarrow \frac{9}{10}\frac{V}{R}=\frac{V}{R}(1-e^{-\frac{R}{L}}t_1)\Leftrightarrow t_1=\frac{L}{R}\ln(10)\approx 3.53 s##, but this answer is different from the solution proposed in the book I took the problem from.
##\frac{9}{10}\frac{V}{R}=\frac{V}{R}(1-e^{-\frac{R}{L}}t_1)##
looks OK but the next bit
##t_1=\frac{L}{R}\ln(10)##
doesn't follow. Check your algebra/arithmetic.


Whoops - sorry, see Post #4,
 
Last edited:
  • Like
Likes hutchphd
Steve4Physics said:
##\frac{9}{10}\frac{V}{R}=\frac{V}{R}(1-e^{-\frac{R}{L}}t_1)##
looks OK but the next bit
##t_1=\frac{L}{R}\ln(10)##
doesn't follow. Check your algebra/arithmetic.
there was a typo in my answer (now corrected): the ##t## was part of the exponent and so the formula I had obtained should be correct.
 
lorenz0 said:
there was a typo in my answer: the ##t## was part of the exponent and so the formula I had obtained should be correct.
Apologies - I think your answer is correct.
 
  • Like
Likes lorenz0
Steve4Physics said:
Apologies - I think your answer is correct.
The mistake was purely mine, thanks. Nonetheless the book claims the answer should be ##0.16s##.
 
lorenz0 said:
The mistake was purely mine, thanks. Nonetheless the book claims the answer should be ##0.16s##.
Why don't you put your value and the book's value in the equation for ##I(t)## and see which one gives you 10% less than the steady state current? Then you will have to decide if you believe the book or your own work.
 
  • Like
Likes lorenz0
lorenz0 said:
The mistake was purely mine, thanks. Nonetheless the book claims the answer should be ##0.16s##.
0.16s is the time to reach 10% of the steady-state current. Probably not a coincidence!

Looks like the wording in the question is wrong/misleading or the person who worked out the ‘official’ answer misinterpreted the question.
 
  • Like
Likes berkeman and lorenz0
Steve4Physics said:
0.16s is the time to reach 10% of the steady-state current. Probably not a coincidence!

Looks like the wording in the question is wrong/misleading or the person who worked out the ‘official’ answer misinterpreted the question.
Thank you very much, no wonder I couldn't see what I was doing wrong.
 
  • Like
Likes berkeman
Back
Top