MHB Solving Equations with High-Power Terms

AI Thread Summary
To solve an equation with a high-power term, numerical methods such as the Newton method and the dichotomy method are recommended for approximation. These iterative techniques can effectively handle complex equations where traditional algebraic methods may fall short. Utilizing computer programs can also streamline the solving process and provide more accurate results. Specificity in the chosen method can enhance the efficiency of finding solutions. Employing these strategies can lead to successful resolution of high-power equations.
Doffy
Messages
12
Reaction score
0
What steps can be taken to solve an equation with a relatively higher power on one side such as:
6977x/1200 = (1 + x/12)60 - 1
 
Mathematics news on Phys.org
Doffy said:
What steps can be taken to solve an equation with a relatively higher power on one side such as:
6977x/1200 = (1 + x/12)60 - 1

You can approximate the solution using numerical methods.
 
evinda said:
You can approximate the solution using numerical methods.

That still leaves too many options. Could you please be a little more specific?
 
Perhaps, the iterative methods, for example,
Newton method, dichotomy method and other.

- - - Updated - - -

Have you tried to solve it using computer programs?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top