MHB Solving for an exponential equation using logarithms 16^{x}-5(4)^{x}-6=0

sp3
Messages
8
Reaction score
0
Hello I'm having trouble solving for this exponential equation : 16^{x}-(5,4)^{x}-6=0
I used some logarithms properties but can't get anything close to the following solutions here View attachment 8366
I tried using log base 16 : log16(16^{x})-6=log16((5,4)^{x}) ; then x - xlog16(5,4)=6 ;
factorizing x : x(1-log16(5,4))=6 here I get lost... I don't know how they got to log base 4 ( the answer is log4(6)) ... i thought about rewriting 5,4 as a fraction 27/5 but it doesn't help a lot... thanks in advance for the help
 

Attachments

  • solutions45.png
    solutions45.png
    5.8 KB · Views: 157
Mathematics news on Phys.org
Are you sure you've copied the equation correctly? According to W|A, the solution to the given equation is

$$x=0.833215$$

But:

$$\log_4(6)\approx1.292481250360578$$
 
Hi sp3, welcome to MHB! ;)

Can it be that your equation should be $16^x-5\cdot 4^x-6=0$?

If so then we can write it as $(4^x)^2-5(4^x)-6=0$ and apply the quadratic formula.
 
Thank youu I suspected something was up with this decimal number... thanks a million times guys! :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top