MHB Solving for Central Force in $r = c\theta^2$ Orbit

AI Thread Summary
The discussion focuses on deriving the central force function f(r) for a particle in a specific orbit defined by r = cθ². Participants express confusion about how to manipulate the equations, particularly the radial equation and the second derivative of r, to isolate f(r). The hint suggests using the substitution u(θ) = 1/r to simplify the problem, but some find it challenging to apply this approach effectively. The conversation highlights the importance of correctly differentiating and substituting variables to arrive at the desired expression for f(r). Ultimately, participants are encouraged to revisit their calculations and consider the hint for clarity.
Carla1985
Messages
91
Reaction score
0
Could someone please explain how I work with $-mf(r)e_r$ in this question. Usually we get given an equation (like the one for f(r)) and have to work out the orbit by getting a differential equation etc. I'm not too sure how to work it this way around.

"A particle of mass m moves under the influence of a central force $\textbf{F}(\textbf{r}) =−mf(r)e_r$, in the orbit

$r = c\theta^2$, (1)


where c > 0 and (r, θ) and er , eθ are the polar co-ordinates and corresponding basis vectors in the plane of motion of the particle. Show that:
\[
f(r)=-h^2(\frac{6c}{r^4}+\frac{1}{r^3})
\]
where $r^2\dot{\theta}=h$ is constant



[Hint: Use the substitution $u(\theta)=\frac{1}{r(\theta}$ to write the radial equation $\ddot{r}-r\dot{\theta}^2=-f(r)$ in terms of u(θ), and then determine f using this equation and (1).]"
 
Mathematics news on Phys.org
Carla1985 said:
Could someone please explain how I work with $-mf(r)e_r$ in this question. Usually we get given an equation (like the one for f(r)) and have to work out the orbit by getting a differential equation etc. I'm not too sure how to work it this way around.

"A particle of mass m moves under the influence of a central force $\textbf{F}(\textbf{r}) =−mf(r)e_r$, in the orbit

$r = c\theta^2$, (1)

where c > 0 and (r, θ) and er , eθ are the polar co-ordinates and corresponding basis vectors in the plane of motion of the particle. Show that:
\[
f(r)=-h^2(\frac{6c}{r^4}+\frac{1}{r^3})
\]
where $r^2\dot{\theta}=h$ is constant


[Hint: Use the substitution $u(\theta)=\frac{1}{r(\theta}$ to write the radial equation $\ddot{r}-r\dot{\theta}^2=-f(r)$ in terms of u(θ), and then determine f using this equation and (1).]"

Hi Carla!

Your equations are:

$$\ddot r - r \dot \theta^2=-f(r) \qquad$$ central acceleration
$$r^2\dot \theta = h \qquad\qquad\qquad$$ preservation of angular momentum in a conservative central field
$$r=c\theta^2 \qquad\qquad\qquad$$ the given orbit

Can you solve $f(r)$ from these, expressing it using only $r$?
 
I'm not sure how to do the $\ddot{r}$ part. I rearranged $r=c\dot{\theta}^2$ for theta and subbed that into get
$f(r)=-(\ddot{r}-\frac{h^2}{r^3})$

I differentiated r and got $\dot{r}=2c\theta\dot{\theta}$
and then subbed in theta again: $\frac{2ch\theta}{r^2}$ and then did the same thing again to get $\ddot{r}=\frac{2ch}{r^2}\theta\dot{\theta}=\frac{2ch^2}{r^2}\theta$ which doesn't add up at all.

I think the hint is confusing me too, it says to do a substitution u=1/r which we always do our other questions but I'm not sure where that applies here.
 
The substitution simply makes some of the problem easier to work. But it is not necessary. See if you can finish it the way I like Serena is helping you with. It will help if you if you then want to go back and use the hint.

-Dan
 
Thanks, I am still working on it thought I think I am going to take a break and get some sleep. its past midnight and the kids will have me up at 7am lol. I am so close its frustrating though.
I have $\ddot{r}=\frac{2ch^2\theta}{r^4}$ instead of $\frac{6ch^2}{r^4}$ and I cannot for the life of me see how I get rid of theta and get a 3 instead.

Maybe a fresh look in the morning will tell me where I've gone wrong though hehe.
 
Carla1985 said:
Maybe a fresh look in the morning will tell me where I've gone wrong though hehe.

Well... the morning has passed.
Any new insights? ;)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top